Dies	inline.	I		SHANJ LESSONPLAN-2021/22(WINTER)
Discipline: MEACHANICAL ENGG.		Semester:3rdSem		Name of the Teaching Faculty: D.D. PRAMANIK
MONTH	Week	DAY		TOPIC
				1.0 Simple stress& strain
				1.1 Types of load, stresses & strains,(Axial and tangential) Hooke's law,
	1ST	1st		Young's modulus,
				bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation
		1st	_	between three elastic caonstant
		5TH	CHAPTER -1	Derive the relation between three elastic constants,
		1st		1.2 Principle of super position, stresses in composite section
AUGUST				1.3 Temperature stress, determine the temperature stress in
	2ND	1st	_	composite bar (single core)
				1.4 Strain energy and resilience, Stress due to gradually
		2nd	4	applied, suddenly applied and impact load
		5TH	Question Discussion	
		1st		Solve of simple problem
		1st		Solve of simple problem

	3RD			2.0 Thin cylinder and spherical shell under internal
				pressure
		2nd		2.1 Definition of hoop and longitudinal stress, strain
		5TH	CHAPTER-2	CLASS TEST-1
	4ТН	1st		strain and volumetric strai
		1st		2.3Computation of the change in length, diameter and volume
		2nd		CLASS TEST-1
		5th		Solve of simple problem
	5TH	1st		Solve of simple problem
		1st		Solve of simple problem
				3.0 Two dimensional stress systems
	2ND		chapter-3	Introduction of Normal stress, Principal plan,
		1st		shear stress etc
				3.1 Determination of normal stress, shear stress and
		1st		resultant stress on oblique plane
				3.1 Determination of normal stress, shear stress and
		2nd		resultant stress on oblique plane
				3.2 Location of principal plane and computation of
		5th		principal stress
	3RD			3.3 Location of principal plane and computation of principal
SEPTEMBER		1st		stress andMaximum shear stress using Mohr's circle
				3.3 Location of principal plane and computation of principal
		1st		stress andMaximum shear stress using Mohr's circle
		2nd		Question Discussion
		5TH		Solve of simple problem.
				4.0 Bending moment& shear force
		1st		4.1 Types of beam and load

	4711]	4.2 Concepts of Shear force and bending moment of
_	4TH	1st	CHAPTER-4	cantilevern beam with ponted load
		2nd		4.2 Concepts of Shear force and bending moment of
		5TH		cantilevern beam UDL
	5TH			Shear Force and Bending moment diagram and its salient features
		1st		illustration in , simply supported beam under point load .
				Shear Force and Bending moment diagram and its salient features
		1st		illustration in , simply supported beam under UDL
				Solve numerical problem cantilever .simply supported
		2nd		and over hanging beam
		5TH	1	INTERNAL EXAMINATION
	1ST 2ND		- chapter-5	Solve numerical problem cantilever .simply supported
		1st		and over hanging beam
				Solve numerical problem cantilever .simply supported
		1st		and over hanging beam
				Solve numerical problem cantilever .simply supported
		2nd		and over hanging beam
				Solve numerical problem cantilever .simply supported
		5TH		and over hanging beam
				5.0 Theory of simple bending.
		1st		5.1 Assumptions in the theory of bending,
OCTORER				5.2 Bending equation, Moment of resistance,
OCTOBER		1st		Section modulus& neutral axis.
				5.2 Bending equation, Moment of resistance, Section modulus& neutral
		2nd		axis.
		5TH		5.3 Solve simple problems.
		1st	5.3 Solve simple problems.	
				6.0 Combined direct & bending stresses
		1st		6.1 Define column Axial load, Eccentric load on column,

I	3RD		1	6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses.
		2nd	_ CHAPER-6	Numerical problems on above
				6.3 Direct stresses, Bending stresses, Maximum&
		5TH		Minimum stresses. Numerical problems on abo
	1ST			6.4 Buckling load computation using Euler's formula (no derivation)
		1st		inColumns with various end conditions
				7.0 Torsion
				7.1 Assumption of pure torsion
		1st	chapter-7	
		2nd		7.2 The torsion equation for solid shaft
		5TH		
		1st		CLASS TEST-2
		1st		7.2 The torsion equation for solid shaft
		1st		7.1 The torsion equation for hollow circular shaft
		2nd		7.1 The torsion equation for hollow circular shaft
NOVEMBER				7.2 Comparison between solid and hollow shaft
	2ND	5TH		subjected to pure torsion and solvr the numerical problem on above.
		1-4		7.2 Comparison between solid and hollow shaft
		1st		subjected to pure torsion and solvr the numerical problem on above.
		1st		SOLVE SIMPLE NUMERICAL PROBLEM
		2nd		SOLVE SIMPLE NUMERICAL PROBLEM
				Comparison between solid and hollow shaft
	3RD	5TH		subjected to pure torsion and solvr the numerical problem on above
		1st		7.2 Comparison between solid and hollow shaft subjected to pure torsion and solvr the numerical problem on above.
		1st		SOLVE SIMPLE NUMERICAL PROBLEM
		2nd		REVISION
	4TH	5TH		REVISION