		GOVT.POLYTECHNICM	IATORDITATIO	LESSONPLAN-2021/22(WINTER)
	Discipline: CHANICAL ENGG.			
IVIEA	CHANICAL ENGG.	Semester:3rdSem		Name of the Teaching Faculty: THAKURA HANSDAH
		No.of Days/Perweek		
SUBJECT:STF	RENGTH OF MATERIAL	classallotted:04	CHAPTER	SemesterFromdate:1.10.2021 ToDate:8.01.2022
MONTH	Week	DAY		TOPIC
				1.0 Simple stress& strain
				1.1 Types of load, stresses & strains,(Axial and tangential) Hooke's law,
		1st		Young's modulus,
	2ND			bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation
	ZND	2nd		between three elastic caonstant
		3rd		x
		4TH	CHAPTER -1	Derive the relation between three elastic constants,
		4TH	CIAITEN 1	1.2 Principle of super position, stresses in composite section
				1.3 Temperature stress, determine the temperature stress in
		1st		composite bar (single core)
				1.4 Strain energy and resilience, Stress due to gradually
	5TH	2nd		applied, suddenly applied and impact load
				1.4 Strain energy and resilience, Stress due to gradually
		3rd		applied, suddenly applied and impact load
		4TH		Question Discussion
		1st		Solve of simple problem
		2nd		Solve of simple problem
	1st			2.0 Thin cylinder and spherical shell under internal
				pressure
		3rd		2.1 Definition of hoop and longitudinal stress, strain
				2.2Derivation of hoop stress, longitudinal stress,
		4TH	0114.875.0	hoop strain, longitudinal strain and volumetric strai
			CHAPTE-2	2.2Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal
				strain and volumetric strai
		1st		2.3Computation of the change in length, diameter and volume
		2nd		Solve of simple problem
	2ND	3rd		CLASS TEST-1
		4TH		Solve of simple problem

		4TH	7	Solve of simple problem
		5TH	1	Solve of simple problem
	3rd			3.0 Two dimensional stress systems
				Introduction of Normal stress, Principal plan,
NOVEMBER		1st		shear stress etc
				3.1 Determination of normal stress, shear stress and
		2nd	chapter-3	resultant stress on oblique plane
				3.1 Determination of normal stress, shear stress and
		3rd		resultant stress on oblique plane
				3.2 Location of principal plane and computation of
		4TH		principal stress
				3.3 Location of principal plane and computation of principal
		1st		stress andMaximum shear stress using Mohr's circle
	4+b		1	3.3 Location of principal plane and computation of principal
	4th	2nd		stress andMaximum shear stress using Mohr's circle
		3rd	1	Question Discussion
		4TH	1	Solve of simple problem.
				4.0 Bending moment& shear force
	5th	1st		4.1 Types of beam and load
				4.2 Concepts of Shear force and bending moment of
		2nd		cantilevern beam with ponted load
		3rd		4.2 Concepts of Shear force and bending moment of
		4TH		cantilevern beam UDL
			CHAPTER-4	Shear Force and Bending moment diagram and its salient features
	1st	1st		illustration in , simply supported beam under point load .
				Shear Force and Bending moment diagram and its salient features
		2nd		illustration in , simply supported beam under UDL
				Solve numerical problem cantilever .simply supported
		3rd		and over hanging beam
		4TH		INTERNAL EXAMINATION
			-	Solve numerical problem cantilever .simply supported
	2ND -	1st		and over hanging beam
				Solve numerical problem cantilever .simply supported
		2nd		and over hanging beam
				Solve numerical problem cantilever .simply supported
		3rd		and over hanging beam

				Solve numerical problem cantilever .simply supported
DECEMBER .		4TH		and over hanging beam
	3rd		_ chapter-5	5.0 Theory of simple bending.
		1st		5.1 Assumptions in the theory of bending,
				5.2 Bending equation, Moment of resistance,
		2nd		Section modulus& neutral axis.
				5.2 Bending equation, Moment of resistance, Section modulus& neutral
		3rd		axis.
		4TH		5.3 Solve simple problems.
ļ	4th	1st		5.3 Solve simple problems.
			CHAPER-6	6.0 Combined direct & bending stresses
		2nd		6.1 Define column Axial load, Eccentric load on column,
				6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses.
		3rd		Numerical problems on above
				6.3 Direct stresses, Bending stresses, Maximum&
		4TH		Minimum stresses. Numerical problems on abo
	1st			6.4 Buckling load computation using Euler's formula (no derivation)
		1st		inColumns with various end conditions
	2ND		chapter-7	7.0 Torsion
				7.1 Assumption of pure torsion
JANUARY		1st		7.2 The torsion equation for solid shaft
JANUARY		2nd		7.1 The torsion equation for hollow circular shaft
				7.2 Comparison between solid and hollow shaft
		3rd		subjected to pure torsion and solvr the numerical problem on above.
		4TH		CLASS TEST-2