	GOVT.POLYTECHNICMAYURBHANJ									
LESSON PLAN										
DISCIPLINE:- MECHANICAL ENGINEERING										
	Name of the Teaching Faculty: THAKURA HANSDAH									
				SEMESTER: 5TH						
Su	ıbject: DME	No.of Days/Perweek classallotted:04	CHAPTER	SemesterFromdate:15.09.2022 ToDate:21.1.2023						
MONTH	Week	DAY		TOPIC TO BE COVERED						
			-	1.Introduction:						
		4TH		Introduction to Machine Design						
		5TH	-	Classification of Machine Design						
	4TH	1ST		Different mechanical engineering materials used in design with their uses and their mechanical and physical properties						
SEPTEMBER		3RD		Different mechanical engineering materials used in design with their uses and their mechanical and physical properties						
SETTEMBER		4TH	- CHAPTER -1	Define working stress, yield stress, ultimate stress & factor of safety and stress –strain curve for M.S & C.I.						
		4111		Define working stress, yield stress, ultimate stress & factor of safety						
		5TH		and stress –strain curve for M.S & C.I.						
	5TH	1ST		Modes of Failure (By elastic deflection, general yielding & fracture)						
		3RD		Modes of Failure (By elastic deflection, general yielding & fracture)						
		4TH		State the factors governing the design of machine elements						
		5TH		Describe design procedure						
	1ST	1ST		QuestionDiscussion.						
		1ST	-	Solve of simple problem.						
	3RD	3RD	-	Solve of simple problem.						
		4TH		Solve of simple problem.						
		5TH		Solve of simple problem.						
	4TH			2.0 Design of fastening elements:						
		1ST		Joints and their classification .						
		3RD	-	State types of welded joints						
OCTOBER		4TH	1	Design of welded joints for single transverse fillet welded joint						
		5TH	7	CLASS TEST-1						
			7	Design of welded joints for double parallel fillet welded joint						

I [٦	Design of welded joints for sinle transverse double parallel fillet
		1ST		welded joint
				Design the welded joint
	5TH	3RD		with eccentric loading.
	5111		CHAPTE-2	State advantages of
		4TH		welded joints over other joints.
		5TH		Solve of simple problem
		1st		
	1ST	3RD		State types of riveted joints.
		4TH	-	Joints and their classification.
		5TH	-	Determine strength & efficiency of riveted joint
-		1ST		Dermine strength & efficiency of riveted joint
		3RD	-	State advantages of riveted joints over other joints.
	2ND	4TH	-	Question Discussion
		5TH	-	Solve of simple problem.
		1ST		3.0 Design of shafts and Keys:
		3RD	-	State function of shafts & State materials for shafts.
		5115		
				Design solid shafts to transmit a given power at given rpm based on a)
		4TH		Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity:
	3RD			(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
		4111		
NOVEMBER				Design solid shafts to transmit a given power at given rpm based on a)
				Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity:
		5TH		(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
-				Design hollow shafts to transmit a given power at given rpm based on
				a) Strength: (i) Shear stress, (ii) Combined bending tension;
		107		b) Rigidity(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
		1ST	CHAPTER-3	
	4TH			Design hollow shafts to transmit a given power at given rpm based on
		200		a) Strength: (i) Shear stress, (ii) Combined bending tension;
		3RD		b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
		4TH		Solve numerical problem on shaft
		5TH		Solve numerical problem on shaft
	5TH	1ST		State standard size of shaft as per I.S
		3RD		State function of keys, types of keys & material of keys
		4TH		
		5TH		
		1ST	4	Describe failure of key, effect of key way.
	1ST	3RD	4	Describe failure of parallel sunkkey, effect of key way.
		4TH]	Describe failure of square key, effect of key way
		5TH		Describe failure of rectangular sunk key, effect of key way.

			ו	Design rectangular sunk key considering its failure against shear &
	2ND	1ST		crushing.
				Design rectangular sunk key by using empirical relation for given
		3RD		diameter of shaft
		4TH		Solve numerical on Design of keys.
		5TH		Solve numerical on Design of keys.
				4.0 Design of Coupling:
	3RD	1ST	-	Design of Shaft Coupling
DECEMBER		3RD		Requirements of a good shaft coupling
		4TH		Types of Coupling.
		5TH	CHAPER-4	Design of Sleeve or Muff-Coupling.
		1ST		Design of Clamp or Compression Coupling.
	4TH	3RD		Solve numerical on Design of Coupling.
	410	4TH		INTERNAL EXAMINATION
		5TH		Solve numerical on Design of Coupling.
				5.0 Design a closed coil helical spring:
	5TH	1ST		Materials used for helical spring
		3RD		Standard size spring wire. (SWG)
		4TH		Terms used in compression spring
		5TH		&Terms used in compression spring
	1ST	1ST		Stress in helical spring of a circular wire.
		3RD		Deflection of helical spring of circular wire
		4TH		Surge in spring
		5TH	CHAPTER-5	Solve numerical on design of closed coil helical compression spring
	2ND	1ST		Solve numerical on design of closed coil helical compression spring
JANUARY		3RD		CLASS TEST-2
JANOAN		4TH		QUESTION DISCUSSION
		5TH		QUESTION DISCUSSION
	3RD	1ST		REVISION
		3RD		REVISION
		4TH		REVISION
		5TH		REVISION

ACADEMIC CO-ORDINATOR