GOVT.POLYTECHNICMAYURBHANJ LESSON PLAN DISCIPLINE: MEACHANICAL ENGINEERING SUBJECT: DESIGN OF MACHINE ELEMENT(C302) Semester:5th Name of the Teaching Faculty: THAKURA HANSDAH No.of **Days/Perweek** classallotted:04 CHAPTER SemesterFromdate:1.10.2021 ToDate:8.01.2022 Week TOPIC DAY

OCTOBER				1. Introduction.
		5TH		Introduction to Machine Design& Classification of Machine
	2ND			Different mechanical engineering materials used in design with their
		2ND	CHAPTER -1	uses and their mechanical and physical properties
				Different mechanical engineering materials used in design with their
		3RD		uses and their mechanical and physical properties
				Define working stress, yield stress, ultimate stress & factor of safety
		4TH		and stress –strain curve for M.S & C.I.
				Define working stress, yield stress, ultimate stress & factor of safety
		5TH		and stress –strain curve for M.S & C.I.
		2ND		Modes of Failure (By elastic deflection, general yielding & fracture)
	4711	3RD		Modes of Failure (By elastic deflection, general yielding & fracture)
	4TH	4TH		Modes of Failure (By elastic deflection, general yielding & fracture)
		5TH		State the factors governing the design of machine elements
	5TH	2ND		State the factors governing the design of machine elements
		3RD		QuestionDiscussion.
		4TH		Solve of simple problem.
		5TH		Solve of simple problem.
	1st			2.0 Design of fastening elements:
		2ND		Joints and their classification .
		3RD		State types of welded joints
		4TH		Design of welded joints for single transverse fillet welded joint
		5TH		
			1	Design of welded joints for double parallel fillet welded joint
		2ND	1	Design of welded joints for sinle transverse double parallel fillet welded joint
		3RD	1	Solve of simple problem
	2ND	4TH]	CLASS TEST-1

MONTH

1	2110	5TH]	Design the welded joint with eccentric loading.
		4TH	CHAPTE-2	State advantages of welded joints over other joints.
		5TH		Solve of simple problem
		2ND		Solve of simple problem
	3rd	3RD		State types of riveted joints.
NOVEMBER		4TH		Joints and their classification.
		5TH		Determine strength & efficiency of riveted joint
		2ND		Dermine strength & efficiency of riveted joint
	4th	3RD		State advantages of riveted joints over other joints.
		4TH		Question Discussion
		5TH		Solve of simple problem.
		_		
		2ND		3.0 Design of shafts and Keys:
		3RD		State function of shafts &State materials for shafts.
				Design solid shafts to transmit a given power at given rpm based on a)
	5th		4	Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity:
		4TH		(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
				Design solid shafts to transmit a given power at given rpm based on a)
				Strength: (i) Shear stress, (ii) Combined bending tension; b) Rigidity:
		5TH		(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
	1st			Design hollow shafts to transmit a given power at given rpm based on
				a) Strength: (i) Shear stress, (ii) Combined bending tension;
		2ND		b) Rigidity(i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
				Design hollow shafts to transmit a given power at given rpm based on
			CHAPTER-3	a) Strength: (i) Shear stress, (ii) Combined bending tension;
		3RD		b) Rigidity: (i) Angle of twist, (ii) Deflection, (iii) Modulus of rigidity
		4TH		Solve numerical problem on shaft
		5TH		INTERNAL EXAMINATION
	2ND	2ND		State standard size of shaft as per I.S
		3RD		State function of keys, types of keys & material of keys
		4TH		Describe failure of key, effect of key way.
		5TH		Describe failure of parallel sunkkey, effect of key way.
	3rd	2ND		Describe failure of square key, effect of key way
DECEMBER		3RD		Describe failure of rectangular sunk key, effect of key way.
DECEMBER		4TH		Design rectangular sunk key considering its failure against shear &
		5TH		crushing.
	4th	2ND		Design rectangular sunk key by using empirical relation for givendiameter of shaft
		3RD		Solve numerical on Design of keys.
				4.0 Design of Coupling:
		4TH		Design of Shaft Coupling
		5TH	CHAPER-4	Requirements of a good shaft coupling&Types of Coupling.
		2ND	1	Design of Sleeve or Muff-Coupling.
	I	2110	J	Construction of Man-coupling.

	5th	3RD]	Design of Clamp or Compression Coupling.
			CHAPTER-5	5.0 Design a closed coil helical spring
				Materials used for helical spring
		4TH		
		5TH		Standard size spring wire. (SWG)
	1st	2ND		Terms used in compression spring
	2ND	2ND		Stress in helical spring of a circular wire
JANUARY		3RD		Deflection of helical spring of circular wire
		4TH		Surge in spring
		5TH		CLASS TEST-2

HOD MECHANICAL ENGINEERING SUBJECT EXPERT ACADEMIC COORDINATOR