GOVT.POLYTECHNICMAYURBHANJLESSONPLAN-2024/25(WINTER)

Discipline: MEACHANICAL ENGG.		Semester:3 RD Sem		Name of the Teaching Faculty: THAKURA HANSDAH	
Subject: SOM		No.of Days/Perweek classallotted:04		SemesterFromdate:1.07.2024 ToDate:08.11.2024	
MONTH	Week	DAY		Topics	
		2ND		1.INTRODUCTION:	
	1ST			Simple stress& strain	
		3RD	CHAPTER 1	Types of load, stresses &strains, (Axial and tangential),	
		4TH		State Hooke's law, Young's modulus	
		5TH		State bulk modulus, modulus of rigidity, Poisson's ratio	
		2ND		Derive the relation between three elastic constants,	
	2ND	3RD		Principle of super position, stresses in composite section	
		4TH		Principle of super position, stresses in composite section	
JULY		5TH		Temperature stress, determine the temperature stress in composite bar (single core)	
		2ND		Temperature stress, determine the temperature stress in composite bar (single core)	
		3RD		Strain energy and resilience, Stress due to gradually applied,	

		3RD			suddenly applied and impact load.
			4TH		Simple problems on above.
			5TH		Simple problems on above.
		4TH	2ND		Simple problems on above
			3RD	CHAPTER-2	2.0 Thin cylinder and spherical shell under internal pressure
			4TH		Definition of hoop and longitudinal stress, strain
			5TH		Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain
			2ND		Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain
			2ND		Computation of the change in length, diameter and volume
		5th	3RD		Solve of simple problem.
			4TH		3.0 Two dimensional stress systems
	AUGUST	1ST	5th	CHAPTER-3	Determination of normal stress, shear stress and resultant stress on oblique plane
		_	2ND		Determination of normal stress, shear stress and resultant stress on oblique plane.

2ND	3RD		Location of principal plane and computation of principal stress	
	4TH		Solve of simple problem.	
	5TH		CLASS TEST-1	
	2ND		Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
3rd	3RD		Location of principal plane and computation of principal stress and Maximum shear stress using Mohr's circle	
	4TH		Question Discussion	
	5TH		Solve of simple problem.	
	2ND		Solve of simple problem.	
	3RD	CHAPTER-4	4.0 Bending moment& shear force	
4th			introduction	
	4TH		Types of beam and load	
	5TH		Concepts of Shear force and bending moment	
5th	2ND		Shear Force and Bending moment diagram and its salient features illustration in cantilever beam,	
	3RD		Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, under point load.	
	4TH		Shear Force and Bending moment diagram and its salient features	
1				

			illustration in cantilever beam, under UDL
		5TH	Shear Force and Bending moment diagram and its salient features
			illustration in cantilever beam, under pointed load and UDL
		2ND	Shear Force and Bending moment diagram and its salient features
			illustration in simply supported beam,
	467	3RD	Shear Force and Bending moment diagram and its salient features
	1ST		illustration in simply supported beam , under point load .
SEPTEMBE		4TH	Shear Force and Bending moment diagram and its salient features
R			illustration in simply supported beam , under UDL
		5TH	Shear Force and Bending moment diagram and its salient features
			illustration in simply supported beam , under pointed load and
			UDL
			Shear Force and Bending moment diagram and its salient features
			illustration in over hanging beam,
		2ND	Shear Force and Bending moment diagram and its salient features
	2ND		illustration in over hanging beam, under point load.
		3RD	Shear Force and Bending moment diagram and its salient features
			illustration in over hanging beam, under UDL
		4TH	Shear Force and Bending moment diagram and its salient features
			illustration in over hanging beam, under pointed load and UDL
		5TH	QUESTION DISCUSION

		2ND		Solve numerical problem
	3RD	3RD		Solve numerical problem
		4TH		Solve numerical problem
		5TH	CHAPTER-5	5.0 Theory of simple bending
		5TH	_	Assumptions in the theory of bending,
		2ND		Bending equation.
	4TH	3RD		Moment of resistance.
		4TH		Section modulus& neutral axis.
		5TH		INTERNAL EXAMINATION
	5th	2ND		QUESTION DISCUSION
		3RD		Solve simple problem
		4TH		Solve simple problem
		5TH		Solve simple problem
	1ST		CHAPTER-6	6.0 Combined direct & bending stresses
		2ND		Define column
-		· ·	1	

	4TH	Axial load, Eccentric load on column,
OCTORER	5TH	Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above
OCTOBER	2ND	Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions.
3RD	3RD	Buckling load computation using Euler's formula (no derivation) in Columns with various end conditions.
	4TH	Numerical problems on above
	5TH	Numerical problems on above
4TH	2ND	Numerical problems on above
	3RD	Numerical problems on above
	4TH	7.0 Torsion
	5TH	Assumption of pure torsion.
	2ND	The torsion equation for solid circular shaft
5TH		
	3RD	The torsion equation for hollow circular shaft
	4TH	The torsion equation for hollow circular shaft

		5TH		Solve numerical problem .
NOVEMBER			CHAPTER-7	Solve numerical problem
	2ND	2ND		Comparison between solid and hollow shaft subjected to pure torsion.
		3RD		Comparison between solid and hollow shaft subjected to pure torsion
		4TH		CALSS TEST-2
		5TH		REVISION
		4TH		
				QUESTION DISCUSION
		2ND		
		3RD		CLASS TEST-2
		4TH		CLASS TEST-2
		5TH		
		2ND		REVISION
		ATTAINDANCE		CLOSED