FOUNDRY TECHNOLOGY

COMPILED BY:
ANANYA ANUPAM
LECTURER IN METALLURGY

GOVERNMENT POLYTECHNIC MAYURBHANJ TIKARPADA

Vision and Mission of the Department

VISION: To offer quality technical education In the field of Metallurgical Engineering with orientation towards industry, entrepreneurship, higher education and to strive for developing professionally competent technicians meeting the needs of the global economy.

MISSION:

M1:To develop students in the field of Metallurgical Engineering as highly motivated, skillful and qualified manpower for employment and higher learning

M2:To promote a conducive environment for all round development of students.

M3 : To promote linkages with external agencies to meet changing needs of industry and society.

M4:ToImproveLaboratories

Program Education Objectives (PEOs)

PEO1:Diploma professionals will be able to make a successful career in metallurgical industries or higher studies to meet the need s of future requirements.

PEO2:Diploma metallurgists will have technical and behavioral competencies through adequate exposure to industry.

PEO3:To impart technological knowledge and skills for so living real-time engineering problems.

PEO 4: To develop human resources with capabilities of effective communication, moral values and social responsibilities.

Foundry as a Manufacturing Process: $=$

Foundry:
Foundry cis a casting process in which we get our desired size and shape product by melting the metal into liquid \& then
pouring them into mould where they Solidify and take the shape of mould cavity.
Principles of casting:
Principles of casting are.
A cast product or casting is produced by the pouring of molten metal into a mold where cit then solidifies in to a geometric shape.

In other instances, molten metal cs injected in to a die having a cavity in the desired shape of the part.

Basic steps involved in making a casting:

1. Make the pattern out of Wood, Metal or Plan. - te ic.
2. Prepare the necessary sand mixtures for mould and core makiritg.
3. prepare the mould and necessary cores.
4. Melt the metal/alloy to be cast.
5. Pour the molten metal/alloy into mould or remove the casting from the mould a tier
the metal solidifies
6. clean and finish the casting.
7. Test and inspect the casting.
8. Remove the defects; cf any.
9. Remove the defects; cf any.
10. Relieve the casting stresses by heat treatment,
11. Again inspect the casting. in
12. Casting is ready for shaping.

Advantages of casting:=

1. We can get complex structure economically.
2. The size of the object does not matter.
3. Good strength.
4. cheapest.
5. We can create an accurate object.

Scanned by CamScanner
D)csadvantages of casting:

1. Poor surface finish.
2. Casting defects.
3. Low fatigue strength compare to forging.
4. It is not economical for mass production.

Applications of casting:-

1. Transportation $V e h o c l e s$.
2. Turbine Varies
3. Power generators:
4. Raclway crossings
5. Agricultural parts.
6. Sanitary fittings.
7. Acrcraft jet'engike parts.

Pattern and Pattern Making:-
Define pattern:
\rightarrow A pattern is a model or the replica (mirror image) of the object to be cast.
Function of the pattern:

- A pattern prepares a mould cave ty for the purpose of making a casting.
- A pattern may contain projections known as core prints if the casting requires a core and need to be made hollow.
- Patterns having fincished and Smooth Surfaces reduce casting defects.
Materials used for making patterns:
- Wood
- Metal
- plastic
- Wax
- plast.

Properties of Pattern material Should have:

- Light in cueight.
- Strong, hard and durable.
- Easily cuarmed, shaped and Joined.
- Resistance to corrosion and e hemrical reaction.
- Dimensionally stable.
- Available at low cost.

Factors asset in Selecting ProPer Pattern Material

- No. of casting to be produced.
- Dimensional accuracy and Surface finish.
- shape complexity and bize of casting.
- casting design parameter.
- Type of moulding materials.
- The chance of, repeat orders.
- Nature of moulding process.

Types of Patterns:=

1. Single piece pattern.
2. split pattern.
3. Loose piece pattern.
4. Match plate pattern.
5. Sweep pattern.
6. Gated pattern.
7. SKeleton pattern.
8. Follow board pattern.
9. Cope \& drag pattern.

Single price patterns:

- It is the simplest type of pattern.
- The pattern is made from one piece and doesnot contain loose pieces or joints.
- It is inexpensive.
- It is used for making a few large castings like stuffing box of steam engche.
- One piece pattern is accommodated ecthen in cope or drag.
Split pattern:

- These patterns are split along the parting plane to facilitate the extraction of mould before pouring operation.
- upper and Lower parts of the spletpattern are accomodated in the cope and drag portion.
- For complex casting, the pattern may be Split in more than flo parts
- castings like taps and water stop-cocks are produced pith the help of split patters.

Loose piece patterns:

- When a one or piece soled pattern has projections which lie above or below the parting plane, it is impossible to with draw it from mould
- Loose pieces remain attached with the main body of pattern with the help of dowel pins.
- Loose piece patterns involve more labour \& consume more time in the molding operation. Match Plate Pattern:

- A match plate pattern is a split pattern having the cope and drags portions mounted on opposite scopes of a plate.
- Gates and runners are also mounted on the match plate.
- piston rings of I.C engines are produced with the help of match plate patterns:
- Match plate patterns are used in machine molding. for producing small castings.

Sweep pattern:=P

- A sweep pattern is mode on a wooden board which sweeps the shape of the casting. con to the sand all around the circumference.
- Once the mold is ready, sweep pattern and post can be removed.
- sweep pattern is used for producing large casting in short time.
- Large Kettles of castiron are made by
Sweep pattern.

- Gated pattern os one or more loose patterns having attached gates and runners.
- A gated pattern can manufacture many. castings at one time on moulding machine.
- Gated pattern are employed for producing small castings.

SKeleton Pattern:-

- Skeleton pattern is the skeleton of a desired shape which may be a s-bend pipe or a chute.
- SKeleton frame is mounted on a metal base.
- Skeleton es made from wooden strips.
- cores cif.necessary can be produced separately.
- Skeleton patterns are used for producing. large casting.
- The type of pattern is also used en ito floor molding process.
Follow board Pattern:-

- Follow board is a wooden board used for supporting a pattern which is very then.
- With Follow board support under ae alk pattern, the drag is rammed then follow board is wecthot-- raw.
- The patternic's removed \& the cope and drag are assembled.
- Follow board are used for casting master - Patterns.

Cope \& Drag pattern:-

- A cope and drag pattern cis a split pattern -haring the cope and drag portions each mounted on separated match plates.
- Each half of the pattern is fixed and molded separately.
- These patterns are used for producing large casting and complete moulds are to 0° heavy.
Types of pattern allowances: $:=$
(a) Shrinkage / contraction allowance.
(b) Machining'/ Finish allowance,
(c) Draft Taper allowance.
(d) Distortion/camber allowance.
(e) Shake/rapping allowance.
a) Shrinkage Allowance:-
- Different metals shrink at different rate.
- Cast cion poured a higher temper wail shrink more than that poured at low. temp ${ }^{n}$.
- Harder grades of cast enron shrink more than softer grades of cast iron.
- Wood patterns used to make patterns are given double allowance; one for shrinkage of pattern and other for cast.
(b) Machining Allowance: $=$
- castings get oxidized in the mold during heat treatment and Scales formed need to be removed.
- It is contended to remove surface roughness and other imperfections from the castings.
- It is required to achieve exact casting dimensions.
- Surface fincish is required on the easting.
(c) Draft or Taper. Allowance:
- It is given to all surfaces perpendicular to parting line.
- Draft allowance cis given so that the pattern can be easily removed from molding material tightly packed around ct.
(d) Distortion Allowance: = A casting will warpcif:
- cit is of cirnegularshape.
- all cots parts olonot shrinKuniformly.
- ct is U or V shaped.
- it has long flat casting.
- it has arms possess cinequal thickness.
(e) Shake allowance: $=$
- A pattern is shaken by striking the same with a wooden piece from side to side. This is done so that the pattern is loosened a lcttlein the mold cavity and can easily removed.
- Shake allowance is normally provided large. castings.
The magnitude of shake allowance can be: reduced by increasing the taper.
Pattern Colours: $=$
Patterns are imparted certain colocers shade con order to:
- identify the mach body of pattern.
- indicate the type of metal to be cast.
- cindentify core print, loose prentete.
pattern colour. Sc heme:
- cast surface to be left unmachined-Black.
cast surface to be machined - Red.
Loose piece and seating - Red strips on yellow
- core print beats - yellow. base:
- stop-off/support's - Black strip.
- parting surfaces - clear or no colocer.

Storing of Patterns:

- patterns should be stored in buclidengs.
- Sucitable shelves and racks etc can be provided for storing pattern.
- patterns can be easily cidentified and traced at the time of repeat order.
- store office should $f c^{\circ} 1 e$ a card for each. pattern.
Wifferentiate between pattern and casting:=
- A pattern cis slightly larger in scizeas compared to the casting.
- A pattern may not have all holes and slots while a casting will have.
- A pattern may be in two or three pieces. whereas a casting is in one piece.
- A pattern carries shrinKage allowance it may be of order. if 1 to $2 \mathrm{~mm} / 400 \mathrm{~mm}$.

Molding Materials:=

Molding Sands:-
Sources:

- River beds
- Sea
- Lakes
- Desert

Types:

- Natural Sands
- Synthetic Sands
- Loam bands.

Ingredients:

- Refractory sand grains
- Binders
- Water
- Additives

Classification of molding sand:-
Natural Sand:-

- Natural Sand is d erectly used for molding and it contain 5- 20% clay (alumina silicate) and 5-18\% moisture.
- It has less refractoriness.
- Natural sand can be used for making molds.
- Natural sand molds can be easily repaired.
- Natural sand may contain organic matter.

Synthetic Sands:-

- Synthetic ${ }^{\circ} \mathrm{c}$ sand consist of silica sand,. with or without clay, binder or moisture.
- It is used for heavy casting steel.
- It is a formulated sand \& cit has better property than natural sand.
Loam Sand:=
- In loam sand, many ingredients are added like fine sand particle, clay, graphite \& fibrous reinforcement:
- It contain 50% clay \& 20% moisture.
- It is used for mainly making big casting like big bells.
- Loam dries hard.
- Sweep or skeleton pattern are used for loam sand.
Classơfccation based upon grace size:
- Grain size influence many sand properties. like permeability, flowabilety, refractoriness, Surface fineness and strengths etc.
- Finer the sand grain s., finer cos moldering sand.
- Finer gracined sands give surface fin os but possess low permeability.
- coarse and uniformly sands impart high permeability, flowabclity and max ${ }^{m}$ refractoriness
- Fine grained sands are used for producing ornamental castings and small sized casting:
- coarse grached sands are used for producing large casting.
Grain shape:-
Foundry sand grains can be divided crito four shapes:
(a) Rounded sand grains
(b) Sub-angular sand grains
(c) Angular sand grains:
(d) compound sand grains.
(a) Rounded sand grains:

- Grains which get rubbed agacrist eachother by the action of wind, waves, a acquire rounded shapes.
- Round grains cimpart high permeability.
- Round grain molding sand possess lower. strength.
- Round grain molding sands possess greater
flowability. flowability.
(b) Sub-angular Grains:

- Sub-angular grain sands possess better strength \& lower permeability.
- Sub-angular sand grains are formed because of the movement and moderate rubbing of angular grains wo th each other.
(c) Angular sand grains:

- Angular grains result when the sand cis forme. -d owing to the decomposition of rocks without movement.
- Formation of angular sand graces cis closely associated with frost and glacial action.
(d) compound grains:
- compound sand grains result when two ormore grains stick together so tightly that they donot get separated either during sieving.

Scanned by CamScanner
or quashing operation.

- compound grains tend to dissociate at higher tempo.
Properties of molding Sands:-
(a) Flowability:
- Flowability is the a bilcity of the molding
sand to get compacted to aluniform density sand to get compacted to aciniform density
- Flowability cincreases as clay and water contents increase.
(b) Green Strength:
- Green strength is the strength of the sand in the green of moist state.
- Green strength helps in making and handling the molds.
(c) Dry strength:
- It is the strength of the molding sand in the dry condition.
- Dry sand strength o's related to gran size, binder and water content.
(d) Hot Strength:
- It is the strength of the sand above $212^{\circ} \mathrm{F}$
- In the absence of hot strength the mold may

1. enlarge.
a. break, erode or
2. get cracked.
(e) Permeability or Porousness:

- Permeability is that property of molding sand which permits the escape of steam and other gases generated in the mold during hot metal pociring "
(f) Refractoriness:
- It is the ability of molding sand to withstand high temperatures we thou

1- fusion
2. cracking, buckling or scabbing.
3. experiencing any major physicalchange.

- refractoriness is there essential in production
(g) Adhesiveness: of high mp alloycasting
- It is the property of molding sand owing to which it

1. sticks with the walls of molding boxes.
2. sticks with daggers and
3. make it possible to mold cope and drag.
(h) collapsibility: sand which determines the re b
which the molding sand or mold.
(c) Fineness:

- Finer sand molds rescist metal penetration and Produce smooth casting surfaces.
- Fineness and permeability are in conflict with each other.
(j) Bench Life:

It cis the ability of the molding sand to retain its properties adhering's toracge.
(K) Molding Sands should possess low coefficient of expansion.
(l) Durability.
(n) Molding sand should be reusable.

Effect of moisture, gracisize and shape on mould quality:

$$
\begin{gathered}
\text { \% moisture } \rightarrow \\
\text { green } \\
\text { strength } \\
\text { Rounded grain } \\
\text { An gin } \\
\text { Brain } \\
\hline
\end{gathered}
$$

Differentiate between facing sand and backing Sand:-

Facing Sand:-

- Facing Sand cis the sand which covers the pattern at around cot.
- Facing Sand forms the face of the mould \& comes in direct contact arith the molten -metal when ct is poured.
- High strength and refractoriness are required for thesis sand:
- It is made of silica and clay arcthout the addition of any used sand.

Baking Sand:-

- Baking sand is the bulk of the sand used to backup the facing sand and to fillup the volume of the box or flask.
- It consist mainly of old, repeatedly used moulding sand which is generally black ch colour due to addition of coaldust and burning on contact with hot metal
- It is also called black sand.
- The main purpose of using this sand is to reduce the cost.
- It doesnot come in contact with the patten

Differentiate between sand preparation and Sand conditioning: $=$
Sand conditioning:-

- In order to obtain good casting, sand used for molding must be correctly condetco ned.-
- The sand must possess all the properties to give good quality of cast product.
- Used sand should be treated appropriately so that it can be funtherused.
- If means that when we dreusing the sand for the mold \& when the fettling is done on the casting the sand has to be removed, the gand losses some of the properties
and if it has to be reused.
- It must be reconditioned.

Sand PreParation:-

- For natural bonded sand, c t should have following things:
(i) proper moisture contain.
(ii) Burnt sand to be removed after use.
(iii) Aeration (there should be separation or gap between sand grains before pouring hot metal and becrig rammed
(iv) Application of facing Sand.
(v) Use of additives like coaldust.

Functions of Sand preparation/conditioning:=

- To develop optimum properties in molding sands.
- To add adequate amount of cuater to activate clay binder.
- To remove foreign matter from the molding Sand.
- To deliver sand at the proper temp.

Sand Reclamation:=
Reasons of sand reclamation:
Treatment of used moculderig Sand so that it regains original condition and can be used again and again with minimum addition of new sand.
Equipment Required: $=$

- Magnetic Separator
- Muller
- Riddle
- Aerator.

Different Sand reclamation techniques:-

1. Mechancial reclamation:

This reclamation remove accumulated coatings on the sand grains.
2. Thermal reclamation:

- Thermal reclamation process involves heating the sand to $1200-1500^{\circ} \mathrm{F}$.
- The's process does not removeclay.
- In this process, sand i's heated up to $800^{\circ} \mathrm{C}$,
- This process is very suitable for 0.0 bonded sands which contain no clay.
- It uses a unique fludized gas fired bed design to combust and removed remaining
residual sand coating.

3. Wry reclamation:

- In dry reclamation process, fines, spent and free clay, fractured sand grains and cion oxide particles etc are removed from the used sand by dry classification.
- Dry reclamation does not restore the origin--al quality of the sands.

4. Net reclamation:

- This technique is wet scrubbing in which suspended sand grains are subjected to Vigorous motion and mutual rubbing by
water current.
- Removes fines and foreign matter from the Sand.
- Removes partly clay coating from the sand grains.

Testing of Molding Sand:=
(a) Moisture contain test:
(i) If moisture will be low, then strength aril be low.
(ii) If moisture will be very high, then permeability will be very low.

(Moisture determining apparatus)
Step involved:

- 20-50gmof prepared sand is placed in the pan \& cis heated by an in framed heater bulb for $2-3$ min.

The moisture in the molding sand is evaporated.
Molding sand is taken out of the pan \& reweighed.

- The percentage of moisture can be calculated from the difference in the weights of the Scanned by CamScanner
initial mocis f and final sample.
(b) Grace finest test:

(Grain finenesstester)
- There are eleven standard sceves mounted one above the other and under the bottom most score is placed a pan.
- The top scieve c s the coarest and the bottom most sieve cis the finest.
- Aisample of dry sand out of which clay has been removed "s placed in the uppermost sieve, sand c's vibrated for a defcincte period of time and the amount of sand retained on each sieves is weighed and the percentage en distribution of grains is computed.
- To obtain the AFS grain finest number, each Percentage i's multiplied by a factor.
- The resulting products are added \& divided by total percentage of sand grain retained.

Af (American foundry society) := AFS grain fineness number $=$
sum of products
total sum percentage of sand retained on pan and each sceves.
(c) permeability test:

2000 Cc of air held on the converted belljan. is forced to pass throcigh the sand specimen.

- A situation comes when the acrentering the specimen equals the air escape through the specimen.
- This gives a stabilised pressure reading or the manometer and the same can be read on the vertical scale.
- Simultaneously using a stopcuatch the time required the 2000 Cc of ain to pass through the sand of specimen is also recorded.

$$
\text { permeability number }=\frac{V \cdot H}{A \cdot P \cdot T}
$$

where, $V=$ volume.

$$
\begin{aligned}
& H=\text { Height of specimen } \\
& A=\text { Area of specimen } \\
& T=\text { Time (minutes) }
\end{aligned}
$$

$$
P=A c^{\circ} \text { pressure }\left(\mathrm{gm} / \mathrm{cm}^{2}\right)
$$

Q. Determine the permeability no. if 2000 cc of air takes 90 sec to pass through a standard specimen (5.08 cm height and 5.08 cm diameter) and the manometer indicates an air pressure reading of $5 \mathrm{gm} / \mathrm{cm}^{2}$.

$$
\begin{aligned}
\text { Sol:- permeability number } & =\frac{V \cdot H}{A_{0} P_{0} T} \\
& =\frac{2000 \times 5.08}{\frac{\pi}{4}(5.08)^{2} \times 5 \times 1.5}=67
\end{aligned}
$$

(d) Mold hardness test: $=$

- Hardness of the mold surface can be tested worth the help of an indentation hardness tester.
- The depth of penetration (achieved by the indenter) with respect to the flat referee. Surface of the tester cis indicated on the dial of the instrument in terms of hardness unit.
The pull handiness scale is divided into 100 units.
(e) Strength test: $=$ Grips
- The most commonly used indicant is of compression
- The most commonly used highest is compression strength test: strength low strength
(i) The specimen is held between the grips.
(ii) Handwheel when rotated acourates a mechanism which bueits up hydraulic pressure.
(iii) Dial indicator fitted on the tester measure the deformation Occuring in the Specimen.
(iv) There are two indicators:
\rightarrow One is meant for use when testing low Strength sand and.
\rightarrow Other is for high strength.
(v) Each indicator has threescale:
- compressive.
- tensile.
- shear.

Bender:

- Binder produced cohesscion between the molding sand grains.
- Binder gives strength to the moldcrig Sand.
- clay binder are most commonly used for molding sand.
- Bender should be added as optimal mancinum.
- clay binders can be classified as:
(i) fireclay.
(ii) bentonite.
(iii) Illete.
(iv) Raolencte.
(i) Fire clay: $=$

Fireclay is a one type of binoler and cit: a refindetory clay usually found in the coal majors.
(ii) Bentonite: =

- The most commonly, used clay binders are bentonite as they produce strongest bond. in the foundry sands.
- Bentonite are the weathered product of Volcanic ash and are soft, creamy, white pocuder.
(ii) Illite:-
- Wite is the decomposition product of moraceous material due to weathering: It is found in natural molding sands. - SUite particles have thickness and wicith of 20 and $100-250$ millimicrons respectively.
(in) Water:-
- Water is responsible for the bonding action. of clays.
- It cimpliove moldability.
- The free water act as lubricant.
- Too little water ail not develope propene strength and plasticity.
- Too much water well result in excessive plasticity.
CAddcitrives:
Materials other than the basic cingredcents are also added to molding sand cnn small quantities to enhance on increase the exciting properties., to give special qualities like resistance to sand expansion, defects etc.
(i) facing materials:-
- Facing materials tends to ob taco smoothen and cleaner surfaces of casting.
- A feal facing material are seal coal, graph--cite coal, sol ca floor etc:
(ii) cushion materials $0^{\circ}=$
- cushion materials burn when the molten metal is poured and thus give rise to space for accomodating the expansion of sc/icol sand at the surface of mold cavity. Flat surfaces of castings may buckle due
to thermal expansion of scilcca sand grains.
- Feal cushion materials are: wood floor, cellulose etc.

Core:

- Core cis a product which is required to create hollow space, recesses and interior cavities that are often a part of casting
- A core may bedefine as a sand shaped. - or formed which max the contocer of a easting for which no provision has been made in the patter for molding.
- core has a sand shape cis generally prod -
separate from the sand mould and \therefore is then baked (harden) to faccilitatp handling and setting into the mold. cores may be made of sand, metal, plastic, ceramic.
Different function of core:
- For hollow castings, cones are required. for the formation of internal cavities.
- cores may provide external undercut
features.
- cores may be used to improve the mold surface.
- cores may be used to strengthen the molds.
- cores may be used to form the getting
system of large size mold.
Characteristics of mold:=
A core must possess.
- Sufficient string th to support itself and get handel a cithout breaking.
- High permeability to left the gases escape through the mold wall.
- Smooth surface to ensure a smooth casting.
- High refractoriness to with stand hot molten metal.
- High collapsibility in order to assist the free contraction of the solidifycrig metals.
Types of cores:=
Cores may be classified according to the.
a) state or condition of core:
- Green sand core.
- Dry sand core.
- No bake sand core.
b) The nature of core materials employed :
- oil bonded cones.
- Resci bonded cones.
- shell bonded cores.
- Sodium silicate cores.
c) type of core hardening process employed:
- CO_{2} process
- Hot box process
- cold set process.
- fluid sand process
- Furan-Nobake process.
- oil-no bake process:
d) Shape/posction of the core:
- Horizontal core
- Vertical core
- Hanging or cover core.
- Balanced core.
- Drop core or stof off core:
- Ram up core.
- Kiss core.

Green sand cone:

- Green sand core are formed by the patter ct self.
- A green sand core is a part of mold.
- It is made out of the same sand from which the rest of the mold has been made ie. molding sand:

Dry Sand core:-

- dry sand core are not produced as a part of mold.
- It made separately and endepenclently of the mold.
- It is made of core sand which differvery much from the mold sand.
- Adry sand core is made ci a core box E it is baked after ramming:
- A dry said core cis positioned in the moldon core sheets formed by core prints ont he patterns.
- A dry sand core ciscinserted on the mold before closing the sand.
No bare sand core:-
- The sand used for preparing in o bake core is
similar to that of used formaking no bake - sand molds.
- synthetic resins $1 c^{\circ}$ he phenol or formaldehyde are used as binder for bonding silica send.
certain chemcials are used as hardness analyst to bring about a chemical reaction we th the binder due to which bonding of sand grains takes place.

Oil bonded cores:=
Conventional sand core ane produced by mic, Silica sand with a small percentage of. linseed oc l.
Resin bonded cores:-

- Phenol resin bonded sand cs rammed in a are box.
- The core is removed from the cone box \& baked in a core oven at 375-450 f to harder the core.
Sodium silicate cones:-
- These care use a core materant consisting of clean, dry sand mixed wed a solution of
sodium selim crate. Sodium ski cate.
Hot box process:
- It uses heated core boxes for the produc -fion of cores.
- The core box cis made of cast iron steel and posses vents for removing gases.
Cold set process
- Whole mixing the cone sand, an accelerator cis added to 4 he binder.
- The's process cos used f_{n} mu un un man ell

Tastable sand process:-.

- A setting or hardening agent such as dr-calcium silicate cis added to sodium sciecate at the time of core sand mixing.
- The sand mixer possess high flowability and it chemically hardens after a short. interval of time.
Honcontal core:-
- A horizontal core cis positioned horizontally in the mold
- It may hare any shape:
- A uniform section horizontal cores are:generally placed at the pacing line.
- It is very commonly used in foundries.
$\underline{\underline{\text { Vertical cone: }}=}$
- On the copescide, a vertical core need more. taper so as not to tear theisand in th cope
- Avertical core cis named sobecacise cf cis Positioned in the mold cavity with cts axcisvertical.

Hanging or cover core:

- It is Known as hanging core because it ha, cit also called cover core ct covers the mold and rest on a seat made in the drag.
- It has no support from bot tom.
-It is supported from aboveand it hang. vertically in the mold cavity.
- It can be made up of ec the green on dry sand.
Balanced core: $=$
- A balanced core is one which supported and balanced from its one end only.
- A balanced core requires a long cor seat so that the core does not fall into the mollow.
- It is used when a casting doesnot want a
through cavity. through cavity.
Dropcoreior stat off core:
- It is employed to make a cavity which. - It is used when a hole cavity required in a casting is not in line with the parting surface, rat her it i's above or below the parting line of casting.

Ramp core: $=$
-It is one which is placed in the sand a long with the pattern before ramming the mold.
-It cannot be placed in the mold after the mold has been rammed.

- It is used to make internal or external details of a casting.
Kisscore: $=$
- It does not require core seats for getting supported.
- It is held in position between drag \& cope due to the pressure exerted by cope and drag.
- Anumber of Kiss core can be scmultaneously positioned in order to obtacni a numbeniof boles. in a castings.

Methods of making cones:
steps involved:-
(1) core sand preparation
(Q) Making the cores
(3) Baking the cores
(4) Finishing the cores
(5) Betting the cores.

1. Core sand preparation:-

The core sand of desired type and compo silica along with the additives is mixed manually.
2. Making the cores: $=$

Cores are prepared manually or using machines depending on the need. . Machines like-Jolt. mach ene, sand

- Jon slinger, core blower etc are used for large scale continuous production, while sundll size cores are manually made in hand filled core boxes.

A core box cis scincilar to a pattern that gives a suitable shape to the core.
b. core baking:=

Cores are baked in oven in order to dree ie away the moisture in them \& also to harden the Winder.

The temperature and duration for baking may vary from 200 to $450^{\circ} \mathrm{F}$ \& from a feal.
minute to hours respectively. Dependingupon size of the core \& binder used.
4. core finishing:-
.The baked core are finished by rubbing on filling curch special tools to remove fins, bump, loose sand.

The cores are also checked for dimensions and cleanliness.

Finally cores are made in parts, they are assembled by using suitable post, pressed and otried in asir before placing
Core binders:
A core binder -..
\rightarrow holes;
$>$ Sand grains together.
$>$ give strength tocore.
\rightarrow Make core to resist erosion \& brakcrig.
\rightarrow Impact adequate collapsibity to cone. core binders are of following types:
\rightarrow Organic binoler..
\rightarrow Inorganic bender.
\rightarrow other bender.
Organic binder: $:$
They $\frac{\text { core oil: }}{\text { may be: }}: V$ Vegetable (Linseed oil)
Marine animal (Whale ort) Mineral oc i.
(2) cereal binders:

They are: Gelatinized starch.......... Gelatinized cornflour.
(3) Water soluble binders:
1.Theyare: Dextrin made from stare h Molasses.
(4) Wood Prooluct binders:

Theyare: natural resin (thermoplastic) Sulfa te binder

Inorganic binder:=

- They are fireclay, bentonite, silica flour, ironoxide etc.
- These binder developes green strength, baked strength, hot strength \& give smooth surface Finish.
Other binders: $=$
They are portland cement, cements, sodium spicate.
Mold \& Moldmahing:
A mold is a one K ind of container which when poured with a molten metal produces a casting of the shape of the mold.

The process of making mold is referred. as mold making.
Mold characteristics:

- A mold most possess refractories to bear the high heat of molten metal.
- posses strength to hold the weight of molten
metal
- produce a minimum a mount of mold gases.
- Be able to resist the errosive active of the molten metal being poured.
- Resist metal penetration in to the mold walls.
Types of mold:=
- Green sand mold.
- Dry sand mold.
- skin-dried mold.
- chir-dried mold.
- core-sand mold.
- Loam sand mold.
- shell mold.
- Cement bonded shell moldiblomp-8 bo Mg
- Metal mold.
- Investment mold.
- Ceramic mold.
- Plaster mold.
- Graphite mold
- Sodium silicate - CO_{2} mold. $\frac{\text { Method of molding method : }}{\text { Various molding }}$
Various molding method are:
- Bench molding.
- Bench molding.
- floor molding
- Floor molding.
- pit molding.
- Machololing.

Machine molding.

Bench molding: $=$

- Molding is carried out on a bench of convenient
height:
- Small \& light molds are prepared on benches.
- The molder makes the mold wild standing.
- Both green and dry sand mold can be.. made by bench molding.
- Both Ferrous and non-fernous castings ore made by bench mold
- Both cope \& drag are made on bench mold. floor molding $:=$
- Molding work is carried out on foundry floor when molds size is large i\& molding cannot be carried out on a bench..
- Medium and large size castings are made by
floor molding.
- The or molding.
- The mold has its drag portion in the floor and cope portion may be rammed in a flask and. inverted on the drag.
- Both green and dry san dol molds can be made by Floor molding.

Bench molding: $=$

- Molding is carried out on a bench of convenient height:-
- Small \& light molds are prepared on benches.
- The molder makes the mold cucild standing.
- Both green and dry sand mold can be. made by bench molding.
- Both Ferrous and non-ferrous castingsiare made by bench mold:
- Both cope \& drag are made on bench móld. floor molding: $=$
- Molding work is carried oct on foundry floor when molds sizes large i\& molding cannot be carried out on a bench..
- Medium and large size castings are made by
floor molding. floor molding.
- The mold has its drag portion in the floor and cope portion may be rammed in a flask and. inverted on the drag.
- Both green and dry sand molds can be made by floor molding.

Pit molding: -

- Very big castings which cannot be made in task aremolded an pits on the floor.
- Very large job/product can be cast easily, through pit molding.
- The mold has its drag part in the peat and a separate cope is rammed and used above the pit (drag).
- In pit molding, the molder may enter the drag \& preparevit.
- A pit is of square or rectangular shape.
- The sides of the pit (drag) are coned with
brick and the bottom es covered with molding sand..
- Gates, runner, pouring basins, sprue etc are made in the cope.
Machine molding:=
- Whereas in bench, floor, pet molding the operation is carried out manually by the hands of the mother, incuse of machine molding all the operations are done by machines.
- Machines perform these operations much
fast, more efficiently and in a betterway.
Molding machine produce colenteral and conses. . ant uproderet.
It produce casting of betterquality and at lower cost.
Molding machines are preferred formass produce. - ion of the casting whereas hand molding.
clench, floor; pit) cis used for limited. (bench, floor; Pit) cis used for limited production:
Few types of molding machinesare:=
(a) Jolt machine.
(b) Squeezer machine.
(c) Jolt-íqueezer machine.
(d) Sand Slinger.
$\xrightarrow[\text { Different methods of ramming i }]{ }$
*Hand ramming:-
- It is done by hand using a rammer.
- It is slow, time consuming process.
- It involves low initial cost.
- It provides non-uncform harolness.
\rightarrow hardness isofirms
* Machine ramming:
- Squezzing
- Jo wing.
- Sand slinging.

Squeezing:
Io flask is filled with loose sand.
2. A platen which can closely enter the flask, contact the upper surface of the loose sand filled in the flask.
3. An air pressure is applied ai th the help. of a piston cylinder arrangement:
4. Squeezing is suitable for relatively
Small cuabe.
5. Sand is more compact in the upper portion of the flask as compare to its lower portion.

To Hing:

1. Flask is filled with loose sand.
2. Flask i is fastened on a platen which is raised to certain height \& allow to drop under its own ivecght against a solid bed plate.
3. This action of raising \& draping the molding box continous till adequate mold hardness is achieved.
4. Jolting cis based for ramming horizontal surface.
5. Sand is more compact in the bottom portion of the flask as compare to its upper portion. Sand Slinging:-

- In sand slinging, molding sand is thrown inside the flask uniformly with a high pressure by a rotating hopper through out the flask.
- The high pressure sand grains are distribute in the mold at equal pressure. Refractory

(Rescitanceheating $7 / C$)

(1) Skimming door (2) Taphole (3) Molten iron
(4) Fire bridge (5) stack (6) Firing door (7) sight thole ($\operatorname{ACOF} / \mathrm{C}$)

(Direct Arc \neq / c)

(An indirect $A r_{\mathrm{C}} \mathrm{f} / \mathrm{c}$)

(crucible f / c)

Types of mold: $=$

1. Shell Mold:-

- In this process, sand is mixed with the moses. - thing resins and it is allowed to come into contact with the heated metallic pattern plate, so that a thick and strongshello of mold is formed around the pattern.
- Pattern is made of castiron.

Ingredient:

- Dy and fine sands
- Fireclay
- Resin (thermosetting resin, phenol forma.
- Additives (coal dust, pulverised -Idehyde)
- Lubricants (calcium stearate, 1 cm er

Advantages:

- We can cast as then as 1.5 mm and high definic
- tron can be cast satisfactorily.
- cooling rate of cast metal being slow, casting process graciscizes langer than those obtained in green sand mold.
- Shell mold casting process give excellent surface finish.
-It produces sharp \& clean edges.
- It produces smoother surface of the castings.

Disadvantages:=

- It is economical on small scale production
- Resin cost are comparatively high.
- Low carbon steel castings made by shell moulding may show depression on their upper surface.
Application:=
- It cis ideal formass production of small casting.
- It is suited to ferrous \& non-ferrous alloy castings in the range $0.1-10 \mathrm{Kg}$.
- A number of small bydravicic castings in stainless steel \& copper alloys are produced.
- Small pipes, brackets, spacers, valve a bodies, shafts \& geans.

sand-resin mixture
(2)

(3)

(5)

(4)

2. Permanent Mold: \longrightarrow

- It is also called gravity die casting.
- If is suited to high volume production of Small, simple castings with uniform wall thickness and no intricate detail.
- Mold made of grey cast iron.

Need for coating:

- It is used to increase the mold life.
- Minimising thermal soak to the moblmatem
- controlling the rate \& direction of the casting solidification.

Advantages:

- Good and fine casting.
- It iss very economical.
- close dimensional tolerance.
- Good surface fincíh

Disadvantages:

- All materials are not suitable for this process.
- complicated shapes are not possible.
- Dies cost is high.

Application :

- Automobile, pistons, stator, gear plank, connecting rod, aircraft fittings.

3. Investment mold $:=$
-It is also called lost wax process or precision casting.

- In this process, there is greater freedom of design.
- It cs used for gastiurbine blades.
- Mold is prepared around an expandable pattern (wax, mercury, plastic).
Steps:
- Producing a die formaking wax pattern.
- Making of expandable pattern and getting system.
- Investing the wax pattern for the prod: - ion of mold.
- Removing wax pattern from the investment mold.
- Pouring metal into the mold.
- After solidified, the castings a re removed. from the mold.
- cleaning, finishing and inspection.

Advantages:

- close dimensional tolerance $2022: 3$.
- Good surface finish.
- Complex shapes can be produced

Disadvantages:

- More expensive process.

Applications:

- Gas'turbine blade.
- Jewellary.
- surgical instrument.
- Treagens for fire al rams.

Cupola furnace: $=$

- cupola is used for melting Scrapmetal\& producing grey cast iron, nodular bastion and some malleable iron casting \& for melting copper base alloys.
- cupola does not produce metal of uniform quality.
- Good grade, low sulphur coke, anthracite coal are used for fuel.
Construction: $=$
- It is a cylindrical shell and its lining mode
of brick and clay. of brick and clay.
- If is constructed from boilerplate (610 mm thick).
- The total cross -sectional area of the tuyers is about $1 / 5^{\text {th }}-1 / 6^{\text {th }}$ of the crosssectional area of the cupola.
- A cupola using 10:1 ratio of iron to cole consumes about $800-900 \mathrm{~cm}^{3}$ of a ch to melt 1 ton of cion.
- In cupola, a changing platform and a chary ing doors's provided.
- cupola capacity 1-15 ton of melted Enron Per heat.
- The height of cupola is about 6 m \& its inside al ciameter $75 \mathrm{~cm}-2.5 \mathrm{~m}$.

Cupola Operation:-
(a) preparation of cupola:-

- slag, coke and iron stinking into the side walls of the F / C are removed and clean.
- Damaged fire bricks are replaced by new one.
- The f / c lining cis reconditioned.
(b) Lightning the Fire:-
- cupola $\hat{c} s$ started about 3hrs before the molten metal is needed.
- Soft and dry pêeces of food are placed on the sand.
- coke is placed over the wooden pieces and the wooden pieces a re cignctied.
- Elinnecessary. for combustion of cokeenter from the twos:
- When the cincteal coke cs burning well, an additional amount of the same cis added to the desire height:-
- coke bed height is around 75 cm above the triers levels.
(c) charge ing of cupola:-
- Input material are coke, flux, metal (pigciron, cast iron scrap, steel scrap).
- Fluxes are base and therefore should not be added in large amount othercuense they will attack the accel refractory lining of cupola.

Scanned by CamScanner

- The quantity of limestone varies from 2 to 4% by aright Jot the me talc charge.
- Fuel used are a good grade of low sulphurcole anthracite coal, carbon briquette.
- The ratio of metal to fuel by weight ranges 4:1 to $2: 1$.
(d) $\mathrm{Meting}:=$
- After the cupola is fully charged a soaking period of about $30 \mathrm{mcn}-1$ hour is given fond pre-heat.
- Blowers are not started during the soaking period. At the end of th
the blast is turned on.
- After asir blast t has been on for about 10 mm , molten iron starts accumulating in the hearth
(e) slagging \& metal tapping:=
- After enough metal iron has collected, the slag hole is open and the slag comes out.
- In the same way, the molten metal also come out through the tapping hole.
(f) Wrapping down the bottom: $=$
- Near the end of the cupola, charging of cupola
is stopped.
- All the contains tin the melt till 1 to 2 . Charges are left above the coke bed.

The bottom door is knocked down \& the remains is the cupola are of the droppeof or ito the floor or otto a bucket.
zones of a Cupola:-
(a) Well:-

- It is a well of moltencinon curch is collected in this zone before tapping.
(b) Superheating, combustion or oxidising zone:-
- It is sctuatal ' 15 cm ' to 30 cm above the top of the tapers:
- In the zone, combustion reaction takes place. so, aloft of heat is liberated.
- chemical reaction which occur in this zone are:

$$
\begin{aligned}
& \mathrm{C}+\mathrm{O}_{2}=\mathrm{CO}_{2}+\text { heat } \\
& 2 \mathrm{Mn}+\mathrm{O}_{2}=\mathrm{MnO}_{2}+\text { heat } \\
& \because \mathrm{SC}^{a}+\mathrm{O}_{2}=\mathrm{SCO}_{2}+\text { heat }
\end{aligned}
$$

(c) Reducing zone or protective zone:-

- If exterids from the topi of combustion zone to the top of coke bed.
-It has reducing atmosphere, so it protects from oxidation.
- An endothermic reaction takes place ci the's zone iniwhich some of hot CO_{2} moving upward through hot coke get reduced?

$$
\mathrm{CO}_{2}+\mathrm{C}=2 \mathrm{CO}
$$

- Temperature $=1200^{\circ} \mathrm{C}$.
(d) Melting zone:-
- Temperature $=1600^{\circ} \mathrm{C}$
- As per the following reaction, the molten iron picks up carbon

$$
3 \mathrm{Fe}+2 \mathrm{CO}=\mathrm{Fe}_{2} \mathrm{C}+\mathrm{CO}_{2}
$$

(e) Preheating zone:-

- In the is zone, the cupola charge lies as alter. -ate layers of coke, limestone \& metal.
- Gases like CO_{2}, co \& $\mathrm{N} / 2$ rising upwards From combustion and reducing zones preheat the cupola charge to about $\psi \omega^{\circ} \mathrm{C}$.
- So, the preheated charge gradually moves down in the melting zone
(-1) Stank zane:-
- Hot gases from cupola pass through the stack
zone and escape to atmosphere. zone and escape to a tmosphere.
- composition of gases cs equal amount of CO_{2} and CO which is 12% each and the rest is 76% nitrogen
Advantages of cupola:-
- Simple design and easier construction.
- Low initial cost as compared to other f / c
- Simple to operate and maintain in good condition.
- Economy in operation \& macitañance.
- It can be continuously operated formary hours.

Limitation of cupola:
Since molten éronand coke come incantact with each other, certain elements (silicon 8 -marg-- anese') are lost while others like sulphur is come from sole.

- close temp r control es défícull to maintain.

Modern Trends in Cupola:-

1. The most recent development in cupola es place assisted shat F / c, where electrical energy is used to heat hot blast ain
2. Pilot plant work has demonstrated usefules of the technique to produce hot blast temp r in the range of $2000-3000^{\circ} \mathrm{f}$:
3. Today environment dictates require that cupola top gas co to be burned before going to atmosphere.
4. Investigations are underway to de termine the feasibility of using excess cupola top gas energy to produce oxygen rich air for blast purpose.
5. The gas fired or cole less cupola is creating matter forductile iron production.
6. The main trend in cupola design in to achieve high thermal efficiency, uniform

Scanned by CamScanner
chemistry \& tempe level in the tapping meh These goals are acheneved through the use of combination refractory lined, water cooled, sade wall design, to minimise heat loss to cooling aster, proper combination of effective stock height? vertical shat velocity, to mincermése heat transfer in the preheat zone \& reducertop gas sensible heat loss.
Electric Arc F/c:
Electric arc f / c are used for the production of high quality cast tings.
\rightarrow Used for melting steed.
\rightarrow capacity $=250$ ug-10tons .
Q inept Electric Arc foe: $=$
\rightarrow It is most widely used remelting unit on steel foundries.
\rightarrow It remelt steel of cucalely deforing composétron.
\rightarrow its diameter es unto 6 metre and capacity of about 125 ton.

Operation:-

- The interior of the f / c is preheated before placing the metal charge in the f / C.
- After preheating, the electrode piecesplare. -d on the hearth are removed.
- The f / c es charged through the charging door. Once the cold, charge' has been placed on the hearth. of the f / c, electric arc is drawn between the electrodes and the surface of the metal charge by lowering the electrodes down till the current jumps the gap between the electrode \& the charge Surface.
- Before pouring: the liquid metal into the laddle, the f/Ce is til fed backarand and the slag is poured off from the charging door.
- The fla is then felted foravard and the molten metal is emptied into laddies...
Advantages:-
- closed temperature and heat control.
- Analysis of melt can be Kept to accurate limits.
- It is not difficult to control the fica atmosph - ere above the molten metal.
- It can make steel directly from pig iron and: Steel scraps.
- Arr f / c are longer and its electrical equipments esscheaper to install.
Limitation:-
- Heating costs are fighter than for other f / c.
Uses: $=$
- In general; high quality carbon steel \&
alloy steels are made in electric direct alloy steels are made in electric direct arciv/c.
Indirect Electricedrc f/C (Rocking f / C).
- It is used for producing smaller melts
as compared to Direct electric arc tlc. as compared to Direct electric are f / C.
- Unlike dinectelectrié Arc F/C, in electric. arc is placed between tao graphite elects
-odes. -odes.
- An enderect electric Arc f / C es of rockingtype.
- Metal charge melts because of the heat
radiation from the arcs and the hot refractor cualls of the f / c..
- It is used for the melting castiron, steel, copper \& its alloy.
- It obtains lower temp r and has less efficiency as compared to direct electric $\operatorname{arcf/c}$.

Operations: $=$

- Initially, pigiron iss charged in the f / C above prigciron, scrap is placed.
- With electric power on, graphite electrode are brought + nearer till the current jump, and an electric arc iss setup beta cess them.
- The heat generated in the arc os respors - coble for meting the change.
- As soon as some metal has melted, the f / c asset to rock to and Fro.
- Rocking helps better heat exchange bet" refractory lining, molten metal \& soled metal:
- When the melting cis complete, the f/o rs tilted mechanceaquy to permit icquidimetal to flow out through. the tap hole in to the laddie.
Advantages:-
- Rocking of f/c avoids overheating \&
therefore decreases the chances o there fore decreases the chances of damaging refractory linineng :
- Its speeds of melting and stirs the. bath and provides a melt of uni form composition.
- Low cost Scrapmetals can be used in an indirect arc f / c.
- operation \& control of the f / c are simple.
Core-less type fight frequency induction furnace
A high Frequency induction f / c consist of a refractory crucible placed centrally. insole water pooled copper coil and packed into position by ramming dry
refractory tightly between the ain refractory tightly betaveen the crucible and the copper coil.
Principle ofaperation:-
- steel scrap is placed in the f / C as metal charge.
- Artigh frequency current is passed through The water pooled copper cocks.
- Therefore heavy alternating currents induced in the metal change by electro - magnet tic cinoluction which create beat. This heat develop in the s "in of metal charge reaches inside by conduction \& melts the charge.
- A magnet 'c stirring action on the molten metal speeds up the melting.

Scanned by CamScanner
process and mixesup the met alcharge unto-
. moly.

- Frequency ranging from 500-10,000 cycles per second.
Advantages:-
-It can melt relatively small quantities (from 1.5 kg to 12 tons) of a cucidevariety of metals \& alloys quickly.
- Magnetic stoning af the melts produces excellent uncfortinty of the composition.
- Rate of energy cinput can be easily controls.
- fld atmosphere can be easily controlled.
- It does not need a warminguptime.
- A number of alloys one after the other can be easily melted.
- Addition of elements len nickel, co, cr, W, Mo, V can be made easily.

Lenctation:-

- The initial cost of tic is high.
- Due to the speed with which the process of melting is completed, there is lint le time available for analysis melt compositi con.

Applications: $=$

- It is very useful for melting general, special, alloy \& high quality stools en small quantities.
Hrencople ot Riser:
- A riser is a passage of sand made in the mold during ramming the cope.
- The molten metal roses in the risen after the mold cavity. is filled. up.
- Themetal en the riser (feeder head) compansates the stirinuage as the
costing. solid - casting solcolonties.
function of riser: $=$
- The primainy function of riser c's to feed metal to the casting so that shrinkage cavities can be fill ed up.
- A riser permitter the escape of airiand mould gases as the mold cavity is filled
with (molten metal. with (molten metal.
- A reser tullup molten metal indicates that the mol cavity has already bon
completely $-5 \| l$ completely tolled up.
- Revers promote denrectrional Soledefeciator

Two types of Riser:=
\rightarrow Open risen:

- The top of the open risen is open.
- It is exposed to atmosphere:

\rightarrow Blind risen:
In bland riser, to in closed.

Riser and directional Solcole ficiation: $=$

- Riser and directional Solcodrification are inter-related because when soliol cifcication proceed directionally from the casting towards the riser, the result is a sound casting.
- A riser is very necessary for all casting to avoid shrinkage defects.

$$
\text { yield }=\frac{W_{c}}{W_{c}+W_{R_{s}}} \times 100
$$

- Theyield for the easting should be high
there, $w_{c}=$ weight of the casting.
$\omega_{R_{5}}=$ Weight of riser, sprue
This indicates the yield can be increased by reducing the weight of riser, sprue Weight of the riser can be reduced by making its size small.
- Besides ríserscize, riser location ens also important as fordinectional Solionlética. -tron.
- Riser location should be such that it promotes directional Solidification.

(R iser location and directional Solidification)

This figure shows a single riser to feed the ousting.,

- The result is a shrinkage defect in the casting.
- There way to hotspotsat two portion ' A ' and ' B ' of the casting \& the solidefe - cation occurs dinectromally to wands them ($i \cdot e$. from thin to the ck section).
- Hotspot at A' could be fed by riser whereas hotspot at ' B ' was unfed. And this was the reason for shrinkage
to occur. to occur.
- However, the shrinkage at ' B ' can be avoided by providing a second riser att ' B ' (dotted part).
Rinser efficiency: $=$

$$
\text { Efficiency }=\frac{I-F}{1} \times 100
$$

where, $I=$ Initial volume ch the risen

$$
F=F_{i} n a l \text { " " } " 1
$$

$I-F=$ Amount of metal scepplied to the casting by riser.

- Solidification in the casting as cuell as in the riser start at same time.
- Efficiency of riser mai y be increased by employing or providing the following methods $:=$
(a) Insulating material.
(b) Exothermci material.
(c) Use of chills:
(d) Use of padding.
(e). Use of chaplets..
(4) Use of moldenंn materials of different
chill capacity. chill ca pacify.
(g) Use of topping up:

Insulating Material: $=$

- Solidification in riser or thin section of mold may be delead by simple insulation
- Insulation can be done by using insulating powder, Insulating sleeve, insulating pad.
- We can achieve by adding powder graphite or charcoal \& refractory powders.

Exothermic Materials: $=$

- These materials create considerable arnourt of heat by exothermic reaction.
- The use of peothermíc compounds improve efficiency about 70%
chills:-
- chills are metal shapes inserted in mold to speed of the solidificcation of a particular portion of the castings.
- chills equalised the cooling rate of thin \& thick section and prevent f hot tears.
- chills promote progressive \& directional solidification.

Padding: $=$

- When others methods of achieving direction - al solidification cann't be used at that time wecan go for padding, which developer temp gradient for directional solcolificaction.
- It involves a modification in the fundament-
- tail design of the casting.

Where by thin sections are thickened ora tapper es introduced to achéeve dinectio-

- val solcolifícatión.

Mold materals of different chill capacities

- Mold materials with different heat conduct - víty (those having different chill capacities) may be used to control the directional soledeficiation
- Varies mold materials with encreascng. chéling ability are:-
(i) chamottee.
(ii) Zircon.
(iii) chrome ore.
(iv) Alumina.
(v) Magnesite.
(vi) Sclecon carbide.

Topping up:=

- It'is useful with very heavy casting having long solidification time.
- Loping up extend the feeding period.
- It involves addiction of Super heated molten metal into the riser at suitable intervals after the mold is filled:

Kiareshape:

- Riser shape en alecided considering the
- following tar tors.
(i) permésesable area:
- The permessable area of junction between riser and'carting these should be optimum, minimum in ondien to reduce fettling cost.
(i) treexing time:
chuorinov's rule:-

$$
\begin{aligned}
& t=u\left(\frac{V}{A}\right)^{2} \\
& u=13.7 \mathrm{~min} /(\text { inch })^{2}
\end{aligned}
$$

- Freezing time is proportional to $(V / A)^{2}$

$$
t \alpha\left(\frac{v}{A}\right)^{2}
$$

- Sphere shape riser will contain its metal in the liquid form for the longest period of the time.
Riser size: $=$
- Riser size es determine by considering freezing time \& feed volume factors.
- A riser must be large enough to freeze. after casting.
$\left(\frac{V}{n}\right)_{\text {Riser }}>\left(\frac{v^{n}}{n}\right)_{\text {casting }}$
- Since higher $\frac{V}{A}$ associates couth it enncreaseof time to freeze.
Gating System:-
Gating system refers to all passage. cunts through which the molten metal passes to enter the mold cavity.
The catting system in composed of
(a) pouring cup \& basin.
(b) Sprue
(c) Runner
(d) Gites
(e) Risers
$\xrightarrow{\text { Function of the gating System: }}$

1. Fell the mold carroty completely before freezing.
2. Introduced the liquid metal in to the mold cavity with low velocity and 1लtlle turbulance.
3. Help to promote tempi gradient. Favourable For proper directional Soledifion Scanned by CamScanner
4. Regulate the rate of which liquid melt enter in to the mold.
characteristics: $=$
5. Agate is a channel which connects runner witt the mold cavity \& through which molten metal flows to the mold cavity.
6. Ad gate should feed liquidmetal to the casting a a rate consistent with the rate of solidification.
7. The size of the gate depends upon the rate of solidification.
8. A small gate is uses for casting which solidify slowly and vice verse.
9. more than one gates maybe used to feet a first freezing casting.
10. Agate should not have sharp ages because trey may break during pouring.
11. A gate basine Preferable provided to act as a reservion on stor ex for molten metal.
12. A gate basine prevent turbulent liquid metal from entering the gate.

Three major types of gate: $=$

1. Top gate
2. Bottom gate
3. parting line side gate.

Casting defects: $=$

1. Shift: $=$

Mes match of top \& bottom part.
2. Smell:=

Enlargement of the mold cavity by metal pressure.
3. Sand wash:=

It occured near the ingate.
4. fin:=

Its a thin projection of metal not intended as part of casting.
5. Blowhole: $=$

If occured due to cnadequa te venting
6. cold short: $=$

It occured when to stream of weld that are unable to fuse together properly \& produce discontinuity.
7. Min runs:=

When a section of casting is incompletty. filled with metal, it in known as mes ruts.
8. Sand inclusion:-

When a portion of the mold breaks away or eroded by the metal stream a sand inclusion occurs.
q. Hot tear:-
\rightarrow Hot tears are solidification cracks at vari-

- ous point in a casting brought about by enteral stresses resulting from restrict -ted contraction.
\rightarrow It occured due to hoghtrescdual stress that are generated as a result of the enabilaty to shrentu:

10. Scab: $=$

It \bar{c} one kind of sand shearing in this case penetration of molten metal into mold sand happens.

Due to very fine sand.
11. Blister: $=$

It occured due to un-even ven ting design where air entrapped in metal
12. Rat tail:=

Indentation on casting surface.
13. Pull down $:=$

It occur en the cope of sand casting.
Cleaning of casting: $=$
shake out:
After the molten metal has been poured into the mold, et is permitted to cool and solidely when the casting was solidiied, it is removed from the molding
box.

This operation को known as shakeout
Fettling:
Fettling includes:
(a) removal of cores from the casting.
(b) removal of adhering scale \& oxcole. scale from the casting surface.
(c) removal of gates, riser, runner etc. fettling operation in two stages:-
(a) Removal of cones: :

- Hammering or vibration given to core does loosen \& break them.
- sand portions sticking insole the castings are removed bill the pocking action using a metal load.
(b) cleaning of casting Surface:
- The outside an onside surface of casting are cleaned of adhearing refractory particle and oxide scale and surface look smooth and pleasing.
- The extend of surface cleancríg required depends upon the metal, alloy of the casting and size of the casting.
- Heavy casting suffer more than light casting.
- Sand may be removed from surface of the casting using hand method and mech ancical equipments.
Sand Blasting:=
- If the strip of aincearrying sand strike against the surface of casting. The process is ynown as sand blasting.
- In shot blasting, the stream of ain carnage shots of metal...
- In sand blasting, the particles are introduced in to the air stream by gravity Feed, direct pressure on the a abrasive?
- In: sand blasting, the sand particles are introduced into the air stream by direct Pressure gravity feed, direct Pressure Scanned by CamScanner
on the abrasive.
- Sand particles fed in to the high velocity ar jet are responsible for the abbrasin action on the casting surface, which intern get clean.
- shot blasting provides a higher nate of oufpat.
- celbbrasives are still shot, while cation shot, malleable iron grit.

White castiron grit; chelledinon grit, cut wire pellet?

- Size of the shot \& grit may range upto 3 mm .
- Small size shots are used for cleaning
\therefore very light castings.
- Shot blasting involves en ter change of molecules between abrasive particles of the abbraded casting surface.
- The ar er pressure used to carry abbrasir -es is of the order of $7 \mathrm{~kg} / \mathrm{cm}^{2}$ \& the velocity of particles ranging from 2050 to $4600 \mathrm{mtr} / \mathrm{men}$.

Chemical cleaning: =
chemical cleaning me thous utilise baths of molten caustic soda containing other additional reagent to react wert th on break the surface oxide layer.

- The electrolytic method involves the application of electricicurrent.
- pinking makes use of del. acid for removing sand from the surface:
- Hydrofloric acid attack sand on the casting where as sulphuric acid attack casting metal.
- poilining involves dipping the casting in aced.
Removal of gates \& Riser:=
Methods are:

1. chipping hammers
2. Flogging.
3. Shearêng.
4. Sawing:
5. Abrassive wheel sleeting:
6. Machining.
7. Flame cutting.
8. plasma cutting.
9. Chipping hammers:=

- It es an air driven hammer having a chisel as the catting tool.
- It is used for casting of Copper, - brass, bronze, ductile cast cion., low and mednum carton steed.

2. Flog gong : =

- Flogging employes removing gates \&. risers from a casting by striking wroth a hammer
- It is very suitable For brîttle materials such as grey \& who e cast iron.
万. Shearing:=
- Shearing is carried out on a shear or shearing machine.
- It isused for small job operations.
-cell, Mg , malleable iron are operated on shearing machine.

4. Sawing: $=$

- Many Kinds of saws ane used for remov. -ing the runner, gates \& riser.
- Hacksaw, crorrcularsaw, band saw.

5. Abrasive wheel slitting: $=$

- It is also used for get removal.
- In this process, cue can form hard or difficult to saw alloys as well as.. commonly founding alloys such as grey, malleable and ductile cast iron. and steel.

6. Machining: $=$

- Much smoother cuts can be obtained with machine cutting \& no further Finishing need to be carried out.

7. flame cutting:

- Feeder heads has larger in size \&f of irregular shapes on steel castings arne very easily removed by oxyacetylene cutting torch.

8. plasma cutting: =

- plasma cutting torch can be used for removing feeder heads from castings of stainless steel \& non-terrous metals and alloys.
Grinding:
It is generally the rough grinding.
whech is used for cleaning the casting surface.
Trimming \& Sizing: $=$
- castings may be trimmed \& scized on shearing punching \& straightening. proces.
Alame gauging \&-flams scarfing -
- These process are adoption of flame cutting and are used to re move exces undescired material fram the costing
- Thés techneques can removed reser pady, clean penetrated sand fo prepare casting forweldings.

Centrictuogal Casting
. In centrifugal casting, the liquid metal is introduced into rotating mold.

- centrifugal force plays a major roloin shaping and feeding of casting.

Qi efferent types of centrifugal casting techniques ane there: $=$
(i) True centrifugal casting.
(ii) Semi- centrígal casting.
(iii) centrifuge casting.
(i) True centrifugal casting:=

- True centriffigal casting are upistraight uniform inner diameter and are produced by spinning the mold about c^{n} ts own axis esther vertically or horizontally. - They have symmetrical configuration (round, square, hexagonal etc) on their outer contour and donot need any centre core.
- A cylíndrécal mold is made to rotate on cts own axis at a speed such that the metal which is poured is throw to the outer surface of the mold cavity
(True chntrifaghil ousting)

- De-Lavaud process makes use of metal mold.
- In this casting, machine contains an accurately machined metal mold which is entirely surrounded by cooling water.
- The machine is mounted on wotheels \& it can be moved lengthwise on a sliclely enclened track.
- chs pouring proceeds, the rotating moll ie. the casting machine is moved slowly down the tracy so that the metal is lace progressively a long the length of the mold aral.

- It may be adopted formass production.
- In then casterigi gating sy्रो tom in not required.
- Dense \& fine grain me ta casting are produced by true centrifugal casting technique.
Disadvantages:=
- This casting technique is indented to
certain shapes. certain shapes.
- Equipment cost s are high.
(ii) Seme-centrífugal casting:
- Sheaves, gearblank \& wheel are produced?
- In this casting, rotation of the mold about its axes happenleke T.C.C.
- In then casting, core cis used to form
the central cavity.
- This casting are made in vertical machines.
- In this castings, more complicated shapes can be produced which a re not suítable for TCC.

Advantages: $=$

- If ensures purity \& density at the extremities such as cast wheel.
ii) Centrifuge casting :-
- parts which are not Symmetrical about any axes of rotation may be cast in a group of molds arranged in a circle to balanced each other.
- Theoxis of mold and axis of rotation: donor coincide with each other.
- The setup is revolved around theceritre of circle to induce pressure on the metal on the mold:

Advantages:-

- Better quality.
- Mote economical.
- Fettling 5 cleaning cost aneles.-
- The percentage of reject is very low.
- Wenectínal solidification can be achieved.
- It is simpler to inspect the casting because defect will occur on the surface not inscale the casting
- We can achieve high casting yield.

CENTRAL SPRUE

CASTING
DRAG CENTRAL SPRUE
(centrifug ecosting)
Scanned by CamScanner

Moore sand casting System?

- Moore sandiasting System for small production of large astern pipes. use a rammed and freed sand lining in consumption wroth \& pouring.
- The mold rotates \& Et does not move length wise.
- Its one end can be raced off if or lower to facilitate progressive filling of the mold with lóquâd metal.
- In ítially one end of the mold is raised. so, that it becomes inclined.
- Ats the pouring start. \& continuous, the end is gradually lowered till the mold is horizontal when the pouring stops.
pressure die-castings:
- In pressure dine casting, molten metal is forced into permanent mold cavity under pressure.
- The pressure is generally obtained by compressed air or hydraulically.
- The pressure varies from 70-5000 $\mathrm{kg} / \mathrm{cm}^{\prime}$

Hot chamber dee casting $:=$

- It is the oldest of diecasting machine and $\hat{i} \hat{i_{s}}$ simplest to operate.
- This machine can produce about 60 or more castings up to 20 kg per hour.
- In hot chamber machine, the melting unit constitutes \& contegnal part of the process.
- The molten metal posses normal amount of supertiet \& therefore less pressure is required.
- cl hot chamber process is of:
(i) Gooseneck/aî-cnjection type

- Melting unit is not a integral part of the cold chamber dee casting machine.
- Molten metal which is poured in to the cold chamber die casting machine is at a lower temperature as compare to that of hot chamber die e casting machree.

Therefore, ct requires much higher. pressure $\hat{e} f$ experience less thermal stress due to lower temprof the molten metal. Advantages of dececasting:=

- High production rate can be achieved.
- We can get close dimensional tolerance.
- Very then sections can be cast without any difficulty.
- Intrigates shapes can be dee cast.
- Machiniñng cost are very small.
- Lacer labour cost.
- It is less effective than sand casting.
- A no. of non-ferrous alloyscan be diff? cast
- It requires less floor space than other casting techniques.
- It \hat{c}_{s} very economical, when used for large scale production.
$\frac{\text { Limitation of die casting : }}{=}$
- ferrous alloys are not cast.
- The maximum size of the casting ins restricted.
- It is uneconomical for small scale product--on (less than about 20,000 costing.
- If contain some porousity.
- It requires comparative ty a longer period of time for oping ch to production
- lies may produce an undesirable chilling effect on the die casting.

