

GOVERNMENT POLYTECHNIC MAYURBHANJ

LECTURE NOTES

ON

COMPUTER APPLICATION

PREPARED BY

HEMANGINI DALEI

LECTURER IN CSE

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

Scanned with CamScanner

CHAPTER-6

C is a general-purpose, high-level language that was originally developed by Dennis M. Ritchie to
develop the UNIX operating system at Bell Labs. C was originally first implemented on the DEC PDP-
11 computer in 1972.

In 1978, Brian Kernighan and Dennis Ritchie produced the first publicly available description of C,
now known as the K&R standard.C has now become a widely used professional language for various
reasons −

 Easy to learn

 Structured language

 It produces efficient programs

 It can handle low-level activities

 It can be compiled on a variety of computer platforms

Characteristics of C

 C was invented to write an operating system called UNIX.

 C is a successor of B language which was introduced around the early 1970s.

 The language was formalized in 1988 by the American National Standard Institute (ANSI).

 The UNIX OS was totally written in C.

 Today C is the most widely used and popular System Programming Language.

 Most of the state-of-the-art software have been implemented using C.

 Today's most popular Linux OS and RDBMS MySQL have been written in C.

Why use C?

C was initially used for system development work, particularly the programs that make-up the
operating system. C was adopted as a system development language because it produces code that
runs nearly as fast as the code written in assembly language. Some examples of the use of C might
be −

 Operating Systems

 Language Compilers

 Assemblers

 Text Editors

 Print Spoolers

 Network Drivers

 Modern Programs

 Databases

 Language Interpreters

 Utilities

C Programs

A C program can vary from 3 lines to millions of lines and it should be written into one or more text
files with extension ".c"; for example, hello.c. You can use "vi", "vim" or any other text editor to write
your C program into a file.This tutorial assumes that you know how to edit a text file and how to write
source code inside a program file.

A C program basically consists of the following parts −

 Preprocessor Commands

 Functions

 Variables

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World" –

#include <stdio.h>

void main() {

 /* my first program in C */

 printf("Hello, World! \n");

 }

 The first line of the program #include <stdio.h> is a preprocessor command, which tells a C
compiler to include stdio.h file before going to actual compilation.

 The next line void main() is the main function where the program execution begins.

 The next line /*...*/ will be ignored by the compiler and it has been put to add additional
comments in the program. So such lines are called comments in the program.

 The next line printf(...) is another function available in C which causes the message "Hello,
World!" to be displayed on the screen.

Compile and Execute C Program

Following are the simple steps −to save the source code in a file, and to compile and run it.

 Open C editor and write the C- program code.

 Save the file as hello.c

 Open a command prompt and go to the directory where you have saved the file.

 Press alt+f9 and press enter to compile your code.

 If there are no errors in your code, the command prompt will take you to the next line and
would generate executable file.

 Now, press ctrl+f9 to execute your program.

 You will see the output "Hello World" printed on the screen.

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a constant, a
string literal, or a symbol. For example, the following C statement consists of five tokens –

Printf(“Hello, World! \n”);

The individual tokens are –

Printf

(

“Hello, World! \n”

)

;

Semicolons

In a C program, the semicolon is a statement terminator. That is, each individual statement must be
ended with a semicolon. It indicates the end of one logical entity.

Comments

Comments are like helping text in your C program and they are ignored by the compiler. They start
with /* and terminate with the characters */ as shown below –

/* my first C program*/

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An
identifier starts with a letter A to Z, a to z, or an underscore '_' followed by zero or more letters,
underscores, and digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers. C is a case-sensitive
programming language. Thus, Manpower and manpower are two different identifiers in C.

Keywords

The following list shows the reserved words in C. These reserved words may not be used as
constants or variables or any other identifier names.

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

Whitespace in C

A line containing only whitespace, possibly with a comment, is known as a blank line, and a C
compiler totally ignores it.

Whitespace is the term used in C to describe blanks, tabs, newline characters and comments.
Whitespace separates one part of a statement from another and enables the compiler to identify
where one element in a statement, such as int, ends and the next element begins.

Ex: int mark;

In the above line there is a white space between int and mark.

Data types in C

Data types in c refer to an extensive system used for declaring variables or functions of different
types. The type of a variable determines how much space it occupies in storage and how the bit
pattern stored is interpreted.

The types in C can be classified as follows −

Sr.No. Types & Description

1
Basic Types

They are arithmetic types and are further classified into: (a) integer types and (b) floating-point
types.

2

Enumerated types

They are again arithmetic types and they are used to define variables that can only assign
certain discrete integer values throughout the program.

3
The type void

The type specifier void indicates that no value is available.

4

Derived types

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types and (e)
Function types.

The array types and structure types are referred collectively as the aggregate types. The type of a
function specifies the type of the function's return value. We will see the basic types in the following
section, where as other types will be covered in the upcoming chapters.

Integer Types

The following table provides the details of standard integer types with their storage sizes and value
ranges −

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 8 bytes -9223372036854775808 to 9223372036854775807

unsigned long 8 bytes 0 to 18446744073709551615

Floating-Point Types

The following table provide the details of standard floating-point types with storage sizes and value
ranges and their precision −

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The void Type

The void type specifies that no value is available. It is used in three kinds of situations −

Function returns as void

There are various functions in C which do not return any value or you can say they return void. A
function with no return value has the return type as void. For example, void exit (int status);

Function arguments as void

There are various functions in C which do not accept any parameter. A function with no parameter
can accept a void. For example, int rand(void);

Pointers to void

A pointer of type void * represents the address of an object, but not its type. For example, a memory
allocation function void *malloc(size_t size); returns a pointer to void which can be casted to any
data type.

Variable

A variable is nothing but a name given to a storage area that our programs can manipulate. Each
variable in C has a specific type, which determines the size and layout of the variable's memory; the
range of values that can be stored within that memory; and the set of operations that can be applied
to the variable.

The name of a variable can be composed of letters, digits, and the underscore character. It must
begin with either a letter or an underscore. Upper and lowercase letters are distinct because C is
case-sensitive. Based on the basic types explained in the previous chapter, there will be the
following basic variable types −

1. Char:Typically a single octet(one byte). It is an integer type.

2. Int:The most natural size of integer for the machine.

3. Float:A single-precision floating point value.

4. Double: A double-precision floating point value.

5. Void: Void represents the absence of type

Defining a variable in C

A variable definition tells the compiler where and how much storage to create for the variable. A
variable definition specifies a data type and contains a list of one or more variables of that type as
follows −

type variable_list;

Here, type must be a valid C data type including char, w_char, int, float, double, bool, or any user-
defined object; and variable_list may consist of one or more identifier names separated by
commas. Some valid declarations are shown here −

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; declares and defines the variables i, j, and k; which instruct the compiler to
create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer consists of
an equal sign followed by a constant expression as follows –

type variable_name = value;

Some examples are −

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

For definition without an initializer: variables with static storage duration are implicitly initialized with
NULL (all bytes have the value 0); the initial value of all other variables are undefined.

Example

Try the following example, where variables have been declared at the top, but they have been
defined and initialized inside the main function –

Live Demo

#include <stdio.h>

// Variable declaration:

extern int a, b;

extern int c;

extern float f;

int main () {

 /* variable definition: */

 int a, b;

 int c;

 float f;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 printf("value of c : %d \n", c);

 f = 70.0/3.0;

 printf("value of f : %f \n", f);

http://tpcg.io/73XWiV

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of c : 30

value of f : 23.333334

Constants

Operators in C

An operator is a symbol that tells the compiler to perform specific mathematical or logical functions.
C language is rich in built-in operators and provides the following types of operators −

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Misc Operators

We will, in this chapter, look into the way each operator works.

Arithmetic Operators

The following table shows all the arithmetic operators supported by the C language. Assume
variable A holds 10 and variable B holds 20 then −

Show Examples

Operator Description Example

+ Adds two operands. A + B = 30

− Subtracts second operand from the first. A − B = -10

* Multiplies both operands. A * B = 200

/ Divides numerator by de-numerator. B / A = 2

 %
Modulus Operator and remainder of after an integer
division.

 B % A = 0

 ++
Increment operator increases the integer value by
one.

 A++ = 11

 - -
Decrement operator decreases the integer value by
one.

 A-- = 9

Relational Operators

The following table shows all the relational operators supported by C. Assume variable A holds 10
and variable B holds 20 then −

https://www.tutorialspoint.com/cprogramming/c_arithmetic_operators.htm

Show Examples

Operator Description Example

==
Checks if the values of two operands are equal or not.
If yes, then the condition becomes true.

(A == B) is not true.

!=
Checks if the values of two operands are equal or not.
If the values are not equal, then the condition
becomes true.

(A != B) is true.

>
Checks if the value of left operand is greater than the
value of right operand. If yes, then the condition
becomes true.

(A > B) is not true.

<
Checks if the value of left operand is less than the
value of right operand. If yes, then the condition
becomes true.

(A < B) is true.

>=
Checks if the value of left operand is greater than or
equal to the value of right operand. If yes, then the
condition becomes true.

(A >= B) is not true.

<=
Checks if the value of left operand is less than or
equal to the value of right operand. If yes, then the
condition becomes true.

(A <= B) is true.

Logical Operators

Following table shows all the logical operators supported by C language. Assume variable A holds
1 and variable B holds 0, then −

Show Examples

Operator Description Example

&&
Called Logical AND operator. If both the operands are
non-zero, then the condition becomes true.

(A && B) is false.

||
Called Logical OR Operator. If any of the two
operands is non-zero, then the condition becomes
true.

(A || B) is true.

!
Called Logical NOT Operator. It is used to reverse the
logical state of its operand. If a condition is true, then
Logical NOT operator will make it false.

!(A && B) is true.

Bitwise Operators

Bitwise operator works on bits and perform bit-by-bit operation. The truth tables for &, |, and ^ is as
follows −

p q p & q p | q p ^ q

0 0 0 0 0

https://www.tutorialspoint.com/cprogramming/c_relational_operators.htm
https://www.tutorialspoint.com/cprogramming/c_logical_operators.htm

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

Assume A = 60 and B = 13 in binary format, they will be as follows −

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

The following table lists the bitwise operators supported by C. Assume variable 'A' holds 60 and
variable 'B' holds 13, then −

Show Examples

Operator Description Example

&
Binary AND Operator copies a bit to the result if it
exists in both operands.

(A & B) = 12, i.e., 0000 1100

|
Binary OR Operator copies a bit if it exists in either
operand.

(A | B) = 61, i.e., 0011 1101

^
Binary XOR Operator copies the bit if it is set in one
operand but not both.

(A ^ B) = 49, i.e., 0011 0001

~
Binary One's Complement Operator is unary and has
the effect of 'flipping' bits.

(~A) = ~(60), i.e,. -0111101

<<
Binary Left Shift Operator. The left operands value is
moved left by the number of bits specified by the right
operand.

A << 2 = 240 i.e., 1111 0000

>>
Binary Right Shift Operator. The left operands value is
moved right by the number of bits specified by the
right operand.

A >> 2 = 15 i.e., 0000 1111

Assignment Operators

The following table lists the assignment operators supported by the C language −

Show Examples

Operator Description Example

=
Simple assignment operator. Assigns values from
right side operands to left side operand

C = A + B will assign the value of
A + B to C

https://www.tutorialspoint.com/cprogramming/c_bitwise_operators.htm
https://www.tutorialspoint.com/cprogramming/c_assignment_operators.htm

+=
Add AND assignment operator. It adds the right
operand to the left operand and assign the result to
the left operand.

C += A is equivalent to C = C + A

-=
Subtract AND assignment operator. It subtracts the
right operand from the left operand and assigns the
result to the left operand.

C -= A is equivalent to C = C - A

*=
Multiply AND assignment operator. It multiplies the
right operand with the left operand and assigns the
result to the left operand.

C *= A is equivalent to C = C * A

/=
Divide AND assignment operator. It divides the left
operand with the right operand and assigns the result
to the left operand.

C /= A is equivalent to C = C / A

%=
Modulus AND assignment operator. It takes modulus
using two operands and assigns the result to the left
operand.

C %= A is equivalent to C = C %
A

<<= Left shift AND assignment operator. C <<= 2 is same as C = C << 2

>>= Right shift AND assignment operator. C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator. C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and assignment operator. C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and assignment operator. C |= 2 is same as C = C | 2

Misc Operators ↦ sizeof & ternary

Besides the operators discussed above, there are a few other important operators including sizeof
and ? : supported by the C Language.

Show Examples

Operator Description Example

sizeof() Returns the size of a variable. sizeof(a), where a is integer, will return 4.

& Returns the address of a variable. &a; returns the actual address of the variable.

* Pointer to a variable. *a;

? : Conditional Expression.
If Condition is true ? then value X : otherwise
value Y

Operators Precedence in C

Operator precedence determines the grouping of terms in an expression and decides how an
expression is evaluated. Certain operators have higher precedence than others; for example, the
multiplication operator has a higher precedence than the addition operator.

For example, x = 7 + 3 * 2; here, x is assigned 13, not 20 because operator * has a higher

https://www.tutorialspoint.com/cprogramming/c_sizeof_operator.htm

precedence than +, so it first gets multiplied with 3*2 and then adds into 7.

Here, operators with the highest precedence appear at the top of the table, those with the lowest
appear at the bottom. Within an expression, higher precedence operators will be evaluated first.

Show Examples

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type)* & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %=>>= <<= &= ^= |= Right to left

Comma , Left to right

The ? : Operator(Conditional operator)

Syntax: Exp1 ? Exp2 : Exp3;

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this −

 Exp1 is evaluated. If it is true, then Exp2 is evaluated and becomes the value of the entire
? expression.

 If Exp1 is false, then Exp3 is evaluated and its value becomes the value of the expression.

Branching:

https://www.tutorialspoint.com/cprogramming/c_operators_precedence.htm

Branching is so called because the program chooses to follow one branch or another.

if statement

This is the most simple form of the branching statements.

It takes an expression in parenthesis and an statement or block of statements. if the expression is
true then the statement or block of statements gets executed otherwise these statements are
skipped.

NOTE: Expression will be assumed to be true if its evaulated values is non-zero.

if statements take the following form:

Show Example

if (expression)

 statement;

or

if (expression)

 {

 Block of statements;

 }

or

if (expression)

 {

 Block of statements;

 }

else

 {

 Block of statements;

 }

or

if (expression)

 {

 Block of statements;

 }

else if(expression)

 {

 Block of statements;

 }

else

 {

 Block of statements;

 }

switch statement:

The switch statement is much like a nested if .. else statement. Its mostly a matter
of preference which you use, switch statement can be slightly more efficient and
easier to read.

Show Example

switch(expression)

 {

http://www.tutorialspoint.com/ansi_c/if_statement_examples.htm
http://www.tutorialspoint.com/ansi_c/switch_statement_examples.htm

 case constant-expression1: statements1;

 [case constant-expression2: statements2;]

 [case constant-expression3: statements3;]

 [default : statements4;]

 }

Looping

Loops provide a way to repeat commands and control how many times they are repeated.
C provides a number of looping way.

while loop

The most basic loop in C is the while loop.A while statement is like a repeating if statement. Like
an If statement, if the test condition is true: the statments get executed. The difference is that after
the statements have been executed, the test condition is checked again. If it is still true the
statements get executed again.This cycle repeats until the test condition evaluates to false.

Basic syntax of while loop is as follows:

Show Example

while (expression)

{

 Single statement

 or

 Block of statements;

}

for loop

for loop is similar to while, it's just written differently. for statements are often used to proccess
lists such a range of numbers:

Basic syntax of for loop is as follows:

Show Example

for(expression1; expression2; expression3)

{

 Single statement

 or

 Block of statements;

}

In the above syntax:

 expression1 - Initialisese variables.

 expression2 - Condtional expression, as long as this condition is true, loop will keep
executing.

 expression3 - expression3 is the modifier which may be simple increment of a variable.

do...while loop

do ... while is just like a while loop except that the test condition is checked at the end of the loop
rather than the start. This has the effect that the content of the loop are always executed at least
once.

Basic syntax of do...while loop is as follows:

Show Example

http://www.tutorialspoint.com/ansi_c/while_loop_example.htm
http://www.tutorialspoint.com/ansi_c/for_loop_example.htm
http://www.tutorialspoint.com/ansi_c/do_loop_example.htm

do

{

 Single statement

 or

 Block of statements;

}while(expression);

break and continue statements

C provides two commands to control how we loop:

 break -- exit form loop or switch.

 continue -- skip 1 iteration of loop.

You already have seen example of using break statement. Here is an example showing usage
of continue statement.

#include

main()

{

 int i;

 int j = 10;

 for(i = 0; i <= j; i ++)

 {

 if(i == 5)

 {

 continue;

 }

 printf("Hello %d\n", i);

 }

}

This will produce following output:

Hello 0

Hello 1

Hello 2

Hello 3

Hello 4

Hello 6

Hello 7

Hello 8

Hello 9

Hello 10

Chapter-7

Function

A function is a group of statements that together perform a task. Every C program has at least one
function, which is main(), and all the most trivial programs can define additional functions.

You can divide up your code into separate functions. How you divide up your code among different
functions is up to you, but logically the division is such that each function performs a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters. A
function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For
example, strcat() to concatenate two strings, memcpy() to copy one memory location to another

location, and many more functions.

A function can also be referred as a method or a sub-routine or a procedure, etc.

Defining a Function

The general form of a function definition in C programming language is as follows −

return_type function_name(parameter list) {

 body of the function

}

A function definition in C programming consists of a function header and a function body. Here are
all the parts of a function −

 Return Type − A function may return a value. The return_type is the data type of the
value the function returns. Some functions perform the desired operations without returning
a value. In this case, the return_type is the keyword void.

 Function Name − This is the actual name of the function. The function name and the
parameter list together constitute the function signature.

 Parameters − A parameter is like a placeholder. When a function is invoked, you pass a
value to the parameter. This value is referred to as actual parameter or argument. The
parameter list refers to the type, order, and number of the parameters of a function.
Parameters are optional; that is, a function may contain no parameters.

 Function Body − The function body contains a collection of statements that define what
the function does.

Example

Given below is the source code for a function called max(). This function takes two parameters
num1 and num2 and returns the maximum value between the two −

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

Function Declarations

A function declaration tells the compiler about a function name and how to call the function. The
actual body of the function can be defined separately.

A function declaration has the following parts −

return_type function_name(parameter list);

For the above defined function max(), the function declaration is as follows −

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so the
following is also a valid declaration −

int max(int, int);

Function declaration is required when you define a function in one source file and you call that
function in another file. In such case, you should declare the function at the top of the file calling the
function.

Calling a Function

While creating a C function, you give a definition of what the function has to do. To use a function,
you will have to call that function to perform the defined task.

When a program calls a function, the program control is transferred to the called function. A called
function performs a defined task and when its return statement is executed or when its function-
ending closing brace is reached, it returns the program control back to the main program.

To call a function, you simply need to pass the required parameters along with the function name,
and if the function returns a value, then you can store the returned value. For example −

Live Demo

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main () {

 /* local variable definition */

 int a = 100;

 int b = 200;

 int ret;

 /* calling a function to get max value */

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2) {

 /* local variable declaration */

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

o/p: Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the values of the arguments.
These variables are called the formal parameters of the function.

Formal parameters behave like other local variables inside the function and are created upon entry
into the function and destroyed upon exit.

While calling a function, there are two ways in which arguments can be passed to a function −

http://tpcg.io/T4MSFr

Sr.No. Call Type & Description

1.Call by value

This method copies the actual value of an argument into the formal parameter of the
function. In this case, changes made to the parameter inside the function have no effect on
the argument.

2.Call by reference

This method copies the address of an argument into the formal parameter. Inside the
function, the address is used to access the actual argument used in the call. This means
that changes made to the parameter affect the argument.

By default, C uses call by value to pass arguments. In general, it means the code within a function
cannot alter the arguments used to call the function.

Scope Rules

A scope in any programming is a region of the program where a defined variable can have its
existence and beyond that variable it cannot be accessed. There are three places where variables
can be declared in C programming language −

 Inside a function or a block which is called local variables.

 Outside of all functions which is called global variables.

 In the definition of function parameters which are called formal parameters.

.Local Variables

Variables that are declared inside a function or block are called local variables. They can be used
only by statements that are inside that function or block of code. Local variables are not known to
functions outside their own. The following example shows how local variables are used. Here all
the variables a, b, and c are local to main() function.

#include <stdio.h>

int main () {

 /* local variable declaration */

 int a, b;

 int c;

 /* actual initialization */

 a = 10;

 b = 20;

 c = a + b;

 printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

 return 0;

}

Global Variables

Global variables are defined outside a function, usually on top of the program. Global variables hold
their values throughout the lifetime of your program and they can be accessed inside any of the
functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for use
throughout your entire program after its declaration. The following program show how global
variables are used in a program.

Live Demo

https://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm
https://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm
http://tpcg.io/TkoIHt

#include <stdio.h>

/* global variable declaration */

int g;

int main () {

 /* local variable declaration */

 int a, b;

 /* actual initialization */

 a = 10;

 b = 20;

 g = a + b;

 printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

 return 0;

}

A program can have same name for local and global variables but the value of local variable inside
a function will take preference. Here is an example −

Live Demo

#include <stdio.h>

/* global variable declaration */

int g = 20;

int main () {

 /* local variable declaration */

 int g = 10;

 printf ("value of g = %d\n", g);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

value of g = 10

Formal Parameters

Formal parameters, are treated as local variables with-in a function and they take precedence over
global variables. Following is an example −

Live Demo

#include <stdio.h>

/* global variable declaration */

int a = 20;

int main () {

 /* local variable declaration in main function */

 int a = 10;

 int b = 20;

 int c = 0;

 printf ("value of a in main() = %d\n", a);

 c = sum(a, b);

 printf ("value of c in main() = %d\n", c);

http://tpcg.io/Nx9joC
http://tpcg.io/bcdMrO

 return 0;

}

/* function to add two integers */

int sum(int a, int b) {

 printf ("value of a in sum() = %d\n", a);

 printf ("value of b in sum() = %d\n", b);

 return a + b;

}

When the above code is compiled and executed, it produces the following result −

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it yourself.
Global variables are initialized automatically by the system when you define them as follows −

Data Type Initial Default Value

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly, otherwise your program may
produce unexpected results, because uninitialized variables will take some garbage value already
available at their memory location.

Array

Arrays a kind of data structure that can store a fixed-size sequential collection of elements of the
same type. An array is used to store a collection of data, but it is often more useful to think of an
array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you
declare one array variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99]
to represent individual variables. A specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first
element and the highest address to the last element.

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of
elements required by an array as follows −

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater than
zero and type can be any valid C data type. For example, to declare a 10-element array called
balance of type double, use this statement −

double balance[10];

Here balance is a variable array which is sufficient to hold up to 10 double numbers.

Initializing Arrays

You can initialize an array in C either one by one or using a single statement as follows −

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } cannot be larger than the number of elements that we
declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created.
Therefore, if you write −

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example. Following is an example
to assign a single element of the array −

balance[4] = 50.0;

The above statement assigns the 5
th
 element in the array with a value of 50.0. All arrays have 0 as

the index of their first element which is also called the base index and the last index of an array will
be total size of the array minus 1. Shown below is the pictorial representation of the array we
discussed above −

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the
element within square brackets after the name of the array. For example −

double salary = balance[9];

The above statement will take the 10
th
 element from the array and assign the value to salary

variable. The following example Shows how to use all the three above mentioned concepts viz.
declaration, assignment, and accessing arrays −

Live Demo

#include <stdio.h>

int main () {

 int n[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n to 0 */

 for (i = 0; i < 10; i++) {

http://tpcg.io/dhfplr

 n[i] = i + 100; /* set element at location i to i + 100 */

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++) {

 printf("Element[%d] = %d\n", j, n[j]);

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

 Pointers

A pointer is a variable whose value is the address of another variable, i.e., direct address of the
memory location. Like any variable or constant, you must declare a pointer before using it to store
any variable address. The general form of a pointer variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of
the pointer variable. The asterisk * used to declare a pointer is the same asterisk used for
multiplication. However, in this statement the asterisk is being used to designate a variable as a
pointer. Take a look at some of the valid pointer declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is
the same, a long hexadecimal number that represents a memory address. The only difference
between pointers of different data types is the data type of the variable or constant that the pointer
points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers very frequently. (a)
We define a pointer variable, (b) assign the address of a variable to a pointer and (c) finally access
the value at the address available in the pointer variable. This is done by using unary operator *
that returns the value of the variable located at the address specified by its operand. The following
example makes use of these operations −

Live Demo

#include <stdio.h>

int main () {

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

http://tpcg.io/Lt9V7y

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not have an
exact address to be assigned. This is done at the time of variable declaration. A pointer that is
assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider
the following program −

Live Demo

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

In most of the operating systems, programs are not permitted to access memory at address 0
because that memory is reserved by the operating system. However, the memory address 0 has
special significance; it signals that the pointer is not intended to point to an accessible memory
location. But by convention, if a pointer contains the null (zero) value, it is assumed to point to
nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

http://tpcg.io/xGfUyr

