| Discipline: Met
Engineering | tallurgical | Semester: 5th semester | Name of the Teaching Faculty: ARABINDA NAY | AK. | | |------------------------------------|-------------|---|--|---------|-----------| | Subject: Heat Treatment Technology | | No of days /week class allotted: 05 | Semester from Date:to | | | | | | | | | | | Month | week | Class Day | Theory topics | %covere | Rema
k | | July | 5th | 1st | Explain Solid state diffusion | | <u> </u> | | | | 2 nd | Explain Fick's law | | | | | 1st | 1 st | Austenite formation | + | | | | | 2 nd | | + | | | | | 3 rd | Explain Austenite mechanism | + | | | | 2nd | 1st | Explain Austenite grain size | + | | | | Zilu | | Explain grain size importance | 4 | | | | | 2 nd | Explain grain size measurement and control | | | | | | 3 rd | Explain pearlite transformation | | | | | | 4 th | Explain bainite transformation | | | | | | 5 th | Explain martensite transformation | 1 | | | | 3rd | 1 st | Explain TTT diagram | | | | | | 2 nd | Explain CCT diagram | 1 | | | Aug | | 3 rd | Explain annealing process | | | | Aug | | 4 th | Explain types of annealing | | | | | 4th | 1 st | Explain objective of annealing | | | | | | 2 nd | Explain normalizing process | _ | | | | | 3 rd | Explain hardening process | 4 | | | | | 4 th | Explain quenching mechanism | | | | | | 5 th | Explain sub zero treatment process | | | | | | 1 st | Explain about different quechants | | | | | 5th | 2 nd | Explain tempering process | | | | | | 3 rd | Explain thermo mechanical treatment | | | | | | 4 th | Explain different tempering process(aus | | | | | | | tempering and martempering) | | | | | | 5 th | Explain hardenability | | | | | 1st | 1 st | Explain gross man's method | 1 | | | | | 2 nd | Explain jominey end quench method | | | | Sept | | 3 rd | Explain Factors affecting hardenability | | | | | | 4 th | Explain Estimation of hardenability | | | | | 2nd | 1 st | Explain Estimation of hardenability | | | | | | 2 nd | Explain about concept of surface | | | | | | | hardening | _ | | | | | 3 rd | Explain factors affecting surface | | | | | | 4 th | hardening Explain high frequency induction | + | | | | | 4 | hardening | | | | | | 5 th | Flame and electron beam hardening | 7 | | | | 3rd | 1 st | Explain laser hardening method | | | | | | 2 nd | Explain case depth measurement of steel | | | | | | 3 rd | Explain concept of carburizing process | _ | | | | | 4 th | Explain pack carburizing | | | | | 411 | 5 th | Explain liquid carburizing | 4 | | | | 4th | 1st | Explain gas carburizing | 4 | | | | | 2 nd 3 rd | Explain vacuum carburizing | + | | | | | 3 ^{ru} 4 th | Explain post carburizing treatment Explain nitriding process of steel | _ | | | | | 5 th | Explain cyaniding process | | |------|-----------------|--|--|--| | | 5th | 1 st | Explain carbo-nitriding process | | | | 1 st | 1 st | Explain Plasma nitriding process | | | | 2 nd | 1 st | Explain Nitro carburising | | | | | 2 nd | Explain Nitro carburising | | | | 3 rd | 1 st | Explain Boronising process | | | | | 2 nd Explain Chromizing process | | | | | | 3rd Explain Toyato diffusion process | | | | 0.07 | | 4 th | Explain Requirements of age hardening | | | OCT | | 5 th | Explain Steps in age hardening | | | | 4 th | 1 st | Explain Types of precipitates form | | | | | 2 nd | Explain Precipitation sequence | | | | | 3 rd | Explain Types of GP Zones | | | | | 4 th | Explain Kinetics of precipitation | | | | | 5 th | Explain Hardening mechanism | | | | 5 th | 1 st | Explain Internal strain hardening | | | | | 2 nd | Explain Dispersion hardening | | | | | 3 rd | Explain Chemical hardening | | | | 1 st | 1 st | Explain concept of different alloy steel | | | | | 2 nd | Explain types of tool steel | | | | 2 nd | 1 st | Explain requirement of tool steel | | | | | 2 nd | Explain cold work and hot work tool steel | | | | | 3 rd | Explain water hardening steel | | | | | 4 th | Explain shock resisting steel | | | | | 5 th | Explain mold steel | | | NOV | 3 rd | 1 st | Discuss about alloying elements in tool steel | | | | | 2 nd | Explain effect of alloying elements | | | | | 3 rd | Explain effect of alloying elements | | | | | 4 th | Explain high speed steel | | | | | 5 th | Explain Types of HSS | | | | 4 th | 1 st | Explain Function of various alloying elements in HSS | | | | | 2 nd | Explain about Stainless steel | | | | | 3 rd | Explain about HSLA Steel | |