GOVT. POLYTECHNIC MAYURBHANJ LESSON PLAN

Discipline : ELECTRICAL ENGG.		Semester: 5th Sem	Name of the Teaching Faculty :Leena Marndi
Subject : DEC&MP		per week class	Semester From date : 01.08.2023 To Date : 30.11.2023
MONTH	Week	Day	Topics
	1st	2nd	BASICS OF DIGITAL ELECTRONICS 1.1 Binary, Octal, Hexadecimal number systems and compare with Decimal system.
		3rd	1.2 Binary addition, Subtraction, Multiplication and Division.
		4th	1.4 Subtraction of binary numbers in 2's complement method.
		5th	for a number in \$421. Excess 2 and Gray Code and vice yersa
	2nd	1st	1.7 Logic Gates: AND, OR, NOT, NAND, NOR and EX-OR gates with truth table.
		2nd	1.8 Realize AND, OR, NOT operations using NAND gates
		3rd	1.8 Realize AND, OR, NOT operations using NOR gates
		4th	1.9 Different postulates and De-Morgan's theorems in Boolean algebra.
		5th	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression
	3rd	1st	1.10 Use Of Boolean Algebra For Simplification Of Logic Expression
AUGUST		3rd	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.
		4th	1.11 Karnaugh Map For 2,3,4 Variable, Simplification Of SOP And POS Logic Expression Using K-Map.
		5th	Revision
		1st	Revision
		2nd	Revision

	4ТН	3rd	2. COMBINATIONAL LOGIC CIRCUITS
		4th	2.2 Half adder circuit and verify its functionality using truth table
		5th	CLASS TEST-1
	STH	1st	2.3 Realize a Half-adder using NAND gates only and NOR gates only.
		2nd	2.4 Full adder circuit and explain its operation with truth table.
		4th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table
	1st	5th	2.5 Realize full-adder using two Half-adders and an OR – gate and write truth table
		1st	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
	2nd	2nd	2.7 Operation of 4 X 1 Multiplexers and 1 X 4 demultiplexer
	Zna	4th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.
		5th	2.8 Working of Binary-Decimal Encoder & 3 X 8 Decoder.
	3rd	1st	2.9 Working of Two bit magnitude comparator.
		2nd	2.9 Working of Two bit magnitude comparator.
<u>~</u>		3rd	REVISION
MBE		4th	REVISION
SEPTEMBER		5th	3. SEQUENTIAL LOGIC CIRCUITS 3.1
SE			3.1 Give the idea of Sequential logic circuits
	4ТН	1st	3.2 State the necessity of clock and give the concept of level clocking and edge triggering
		4th	3.3 Clocked SR flip flop with preset and clear inputs.
		5th	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
		1st	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table
		2nd	3.6 Concept of race around condition and study of master slave JK flip flop
	5TH	3rd	3.5 Construct level clocked JK flip flop using S-R flip-flop and explain with truth table

		4th	3.7 Give the truth tables of edge triggered D and T flip flops and draw their symbols.
		5th	3.8 Applications of flip flops
	1st	2nd	3.10 4-bit asynchronous counter and its timing diagram 3.11 Asynchronous decade counter.
		3rd	
		4th	3.12 4-bit synchronous counter.
		5th	3.13 Distinguish between synchronous and asynchronous counters
	2nd	1st	3.14 State the need for a Register and list the four types of registers.
		2nd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop
		3rd	3.15 Working of SISO, SIPO, PISO, PIPO Register with truth table using flip flop
OCTOBER		4th	REVISION
CTC		5th	4.8085 MICROPROCESSOR
		301	4.1 Introduction to Microprocessors, Microcomputers
	3rd	1st	4.2 Architecture of Intel 8085A Microprocessor and description of each block.
		2nd	4.3 Pin diagram and description.
		3rd	4.3 Pin diagram and description.
		4th	INTERNAL TEST
	5TH	1st	4.4 Stack, Stack pointer & stack top
		2nd	4.5 Interrupts
	1st	3rd	4.8 Instruction set of 8085 example
		4th	4.8 Instruction set of 8085 example
		5th	4.9 Addressing mode
	2nd	1st	4 .10 Fetch Cycle, Machine Cycle, Instruction Cycle, T-State
		2nd	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write
		3rd	4.11 Timing Diagram for memory read, memory write, I/O read, I/O write
		4th	4.12 Timing Diagram for 8085 instruction

NOVEMBER		5th	4.12 Timing Diagram for 909E instruction
		501	4.12 Timing Diagram for 8085 instruction
	3rd	1st	4.13 Counter and time delay.
		2nd	4. 14 Simple assembly language programming of 8085.
		3rd	4. 14 Simple assembly language programming of 8085.
		4th	REVISION
		5th	REVISION
	4TH	1st	5. INTERFACING AND SUPPORT CHIPS
			5.1 Basic Interfacing Concepts, Memory mapping & I/O mapping
		2nd	interface Intel 8255
		3rd	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controlle
		4th	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controlle
		5th	5.3 Application using 8255: Seven segment LED display, Square wave generator, Traffic light Controlle
	5TH	2nd	REVISION
		3rd	CLASS TEST-2
		4th	REVISION